logo

Orthogonal Projection in Hilbert Spaces 📂Hilbert Space

Orthogonal Projection in Hilbert Spaces

Definition1

Let’s assume a closed subspace VV of a Hilbert space HH is given.

When vH\mathbf{v} \in H is represented as v=v1+v2\mathbf{v} = \mathbf{v}_{1} + \mathbf{v}_{2} with respect to v1V\mathbf{v}_{1} \in V and v2V\mathbf{v}_{2} \in V^{\perp}, a surjection P:HVP :H \to V that satisfies the following is called an orthogonal projection.

Pv=v1 P \mathbf{v} = \mathbf{v}_{1}

Explanation

Orthogonal projection has the following properties:

  • PP is linear, bounded, and P=1| P | = 1.
  • PP is a self-adjoint operator, i.e., P=PP^{ \ast } = P.
  • PP is idempotent, which means P2=PP^{2} = P.

Orthogonal projection extended to the Hilbert space naturally covers orthogonal projection in matrix algebra, and it feels a bit more abstract in its definition.

Theorem

Let’s assume a [normalized orthogonal basis] {ek}kN\left\{ \mathbf{e}_{k} \right\}_{k \in \mathbb{N}} of the closed subspace VV of the Hilbert space HH is given. For every vH\mathbf{v} \in H, orthogonal projection P:HVP : H \to V can be represented as follows.

Pv=k=1v,ekek P \mathbf{v} = \sum_{k=1}^{\infty} \left\langle \mathbf{v} , \mathbf{e}_{k} \right\rangle \mathbf{e}_{k}

Proof

Since {ek}k=1\left\{ \mathbf{e}_{k} \right\}_{k=1}^{\infty} is a basis of VV, PvVP \mathbf{v} \in V is represented as follows for {ak}k=1C\left\{ a_{k} \right\}_{k=1}^{\infty} \subset \mathbb{C} not equal to a1==0a_{1} = \cdots = 0.

Pv=k=1akek P \mathbf{v} = \sum_{k =1}^{\infty} a_{k} \mathbf{e}_{k}

Because of the orthogonality of {ek}k=1\left\{ \mathbf{e}_{k} \right\}_{k=1}^{\infty}, ei,ei=1\left\langle \mathbf{e}_{i} , \mathbf{e}_{i} \right\rangle = 1 and therefore ei,ej=0\left\langle \mathbf{e}_{i} , \mathbf{e}_{j} \right\rangle = 0 for iji \ne j.

Pv,Pv=k=1ak2 \left\langle P \mathbf{v} ,P \mathbf{v} \right\rangle = \sum_{k =1}^{\infty} a_{k}^{2}

Meanwhile, due to the property P=PP^{ \ast }=P and P2=PP^{2} = P from Pv=k=1akekP \mathbf{v} = \sum_{k =1}^{\infty} a_{k} \mathbf{e}_{k},

Pv,Pv=v,PPv=v,Pv=k=1akv,ek \left\langle P \mathbf{v} ,P \mathbf{v} \right\rangle = \left\langle \mathbf{v} ,P^{ \ast }P \mathbf{v} \right\rangle = \left\langle \mathbf{v} ,P \mathbf{v} \right\rangle = \sum_{k =1}^{\infty} a_{k} \left\langle \mathbf{v} , \mathbf{e}_{k} \right\rangle

Hence

k=1ak2=k=1akv,ek \sum_{k =1}^{\infty} a_{k}^{2} = \sum_{k =1}^{\infty} a_{k} \left\langle \mathbf{v} , \mathbf{e}_{k} \right\rangle

In summary,

k=1ak(akv,ek)=0 \sum_{k =1}^{\infty} a_{k} \left( a_{k} - \left\langle \mathbf{v} , \mathbf{e}_{k} \right\rangle \right) = 0

Therefore, for every kNk \in \mathbb{N}, ak=v,eka_{k} = \left\langle \mathbf{v} , \mathbf{e}_{k} \right\rangle must hold.

Pv=k=1v,ekek,vH P \mathbf{v} = \sum_{k=1}^{\infty} \left\langle \mathbf{v} , \mathbf{e}_{k} \right\rangle \mathbf{e}_{k} \qquad , \mathbf{v} \in H

See Also


  1. Ole Christensen, Functions, Spaces, and Expansions: Mathematical Tools in Physics and Engineering (2010), p74 ↩︎