logo

Hilbert Space Adjoint Operators 📂Hilbert Space

Hilbert Space Adjoint Operators

Buildup1

Let us assume that we are given bounded linear operators T:KHT : K \to H in Hilbert spaces (H,,H)\left( H, \left\langle \cdot , \cdot \right\rangle_{H} \right) and (K,,K)\left( K, \left\langle \cdot , \cdot \right\rangle_{K} \right). Then, for any fixed element wH\mathbf{w} \in H, the following defined Φ:KC\Phi : K \to \mathbb{C} becomes a linear functional ΦK\Phi \in K^{ \ast }.

Φv:=Tv,wH \Phi \mathbf{v} := \left\langle T \mathbf{v} , \mathbf{w} \right\rangle_{H}

According to the Riesz Representation Theorem, in the Hilbert space KK, there must uniquely exist an element TwKT^{ \ast } \mathbf{w} \in K for all vK\mathbf{v} \in K that satisfies the following.

Φv=v,TwK \Phi \mathbf{v} = \left\langle \mathbf{v} , T^{ \ast } \mathbf{w} \right\rangle_{K}

Although we cannot know what TwKT^{ \ast } \mathbf{w} \in K specifically is for the previously fixed element wH\mathbf{w} \in H, TT^{ \ast } can be seen as the operator T:HKT^{ \ast } : H \to K that maps w\mathbf{w} to TwT^{ \ast } \mathbf{w}. From this discussion, the following concept can be introduced.

Definition

Let H,KH,K be a Hilbert space. For a bounded linear operator T:KHT : K \to H, the T:HKT^{ \ast } : H \to K that satisfies the following is called the adjoint operator of TT.

Tv,wH=v,TwK,vK \left\langle T \mathbf{v} , \mathbf{w} \right\rangle_{H} = \left\langle \mathbf{v} , T^{ \ast } \mathbf{w} \right\rangle_{K} ,\quad \forall \mathbf{v} \in K

Explanation

Also known as dual operator. It is also denoted by T#T^{\#}.

The adjoint operator has properties such as:

  • TT^{ \ast } is linear and bounded.
  • (T)=T\left( T^{ \ast } \right)^{ \ast } = T
  • T=T\left\| T^{ \ast } \right\| = \left\| T \right\|

Meanwhile, when H=KH = K, adjoint operators that have the following good properties are called by a more special name. Let HH be a Hilbert space and T:HHT : H \to H be linear and bounded1.

  • If T=TT = T^{ \ast }, then TT is called self-adjoint.
  • If TT=TT=ITT^{ \ast } = T^{ \ast }T = I, then TT is called unitary.

If TT is self-adjoint, then for all v,wH\mathbf{v} , \mathbf{w} \in H,

Tv,w=v,Tw \left\langle T \mathbf{v} , \mathbf{w} \right\rangle = \left\langle \mathbf{v} , T \mathbf{w} \right\rangle

If TT is unitary, then for all v,wH\mathbf{v} , \mathbf{w} \in H,

Tv,Tw=v,w \left\langle T \mathbf{v} , T \mathbf{w} \right\rangle = \left\langle \mathbf{v} , \mathbf{w} \right\rangle

From the definition, unitary TT is reversible,

T1=T T^{-1} = T^{ \ast }

Especially, unitary operators have a very important property related to the normal orthogonal basis.


  1. Ole Christensen, Functions, Spaces, and Expansions: Mathematical Tools in Physics and Engineering (2010), p71-72 ↩︎ ↩︎