logo

Analytic Number Theory and the Liouville Function 📂Number Theory

Analytic Number Theory and the Liouville Function

Definition 1

Let’s consider a prime number p1,,pkp_{1} , \cdots , p_{k} and a natural number nn represented as n=p1a1pkakn = p_{1}^{a_{1}} \cdots p_{k}^{a_{k}}. The arithmetic function λ\lambda defined as follows is called the Liouville function. λ(n)=(1)a1+ak \lambda (n) = (-1)^{a_{1} + \cdots a_{k}}

Basic Properties

  • [1] Liouville series: nn is a perfect square, then 11, otherwise 00. In other words, dnλ(d)={1,n is a square0,otherwise \sum_{d \mid n} \lambda (d) = \begin{cases} 1 &, n \text{ is a square} \\ 0 & , \text{otherwise}\end{cases}
  • [2] Completely multiplicative: For all m,nNm,n \in \mathbb{N}, λ(mn)=λ(m)λ(n)\lambda (mn) = \lambda (m) \lambda (n)

Description

n12345678910 λ(n)1111111111dnλ(d)1001000010 \begin{matrix} n & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ \ \lambda (n) & 1 & -1 & -1 & 1 & -1 & 1 & -1 & -1 & 1 & 1 \\ \sum_{d \mid n} \lambda (d) & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \end{matrix} The Liouville function might not be intuitively understood just by its definition similar to the Möbius function. Interestingly, following the proof of theorem [1] and the Möbius inversion formula, one can confirm that: λ1(n)=μ(n),nN \lambda^{-1} (n) = \left| \mu (n) \right| , \qquad \forall n \in \mathbb{N}

Proof

[2]

n=p1a1pkakm=q1b1qrbr n = p_{1}^{a_{1}} \cdots p_{k}^{a_{k}} \\ m = q_{1}^{b_{1}} \cdots q_{r}^{b_{r}} Let two natural numbers m,nm,n be represented as mentioned above. Then, according to the definition of the Liouville function, λ(nm)=(1)a1+ak+b1++br=(1)a1+ak(1)b1++br=λ(n)λ(m) \lambda (nm) = (-1)^{a_{1} + \cdots a_{k} + b_{1} + \cdots + b_{r}} = (-1)^{a_{1} + \cdots a_{k} }(-1)^{ b_{1} + \cdots + b_{r}} = \lambda (n) \lambda (m)

[1]

Properties of multiplicative functions:

  • (2): It’s equivalent that ff is a multiplicative function and for all prime numbers p1,,prp_{1} , \cdots , p_{r} and all a1,,arNa_{1} , \cdots, a_{r} \in \mathbb{N}, f(p1a1prar)=f(p1a1)f(prar)f \left( p_{1}^{a_{1}} \cdots p_{r}^{a_{r}} \right) = f \left( p_{1}^{a_{1}} \right) \cdots f \left( p_{r}^{a_{r}} \right).
  • (6): If ff is completely multiplicative, then F(n):=dnf(d)F(n) := \sum_{d \mid n} f(d) is multiplicative.

If gg is defined as g(n):=dnλ(n)g(n) := \sum_{d \mid n} \lambda (n), then theorem [2] ensures that λ\lambda is completely multiplicative, hence by corollary (6), gg is multiplicative. If gg is a multiplicative function, by corollary (2) we can break down gg, which means it’s sufficient to calculate only for a fixed prime number pp and aNa \in \mathbb{N}, g(pa)g \left( p^{a} \right). g(pa)=dpaλ(d)=1+λ(p)+λ(pa)=11+11++(1)a={0,a is odd1,a is even \begin{align*} g \left( p^{a} \right) =& \sum_{d \mid p^{a}} \lambda (d) \\ =& 1 + \lambda \left( p \right) + \cdots \lambda \left( p^{a} \right) \\ =& 1 - 1 + 1 - 1 + \cdots + (-1)^{a} \\ =& \begin{cases} 0 &, a \text{ is odd} \\ 1 &, a \text{ is even} \end{cases} \end{align*} Therefore, g(n)g(n) is represented solely by the product of 00 and 11, and if aa is odd for even one pp, 00 is multiplied resulting in g(n)=0g(n) = 0.


  1. Apostol. (1976). Introduction to Analytic Number Theory: p37. ↩︎