logo

Euler's Totient Function in Analytic Number Theory 📂Number Theory

Euler's Totient Function in Analytic Number Theory

Definition 1

The arithmetic function defined as follows φ\varphi is called the totient function. φ(n):=gcd(k,n)=11 \varphi (n) := \sum_{\gcd ( k , n ) = 1} 1

Basic Properties

  • [1] Totient series: the norm NN. That is, dnφ(d)=N(n) \sum_{d \mid n } \varphi (d) = N(n)
  • [2] Multiplicativity: For all m,nNm, n \in \mathbb{N} that satisfy gcd(m,n)=1\gcd (m,n) = 1, φ(mn)=φ(m)φ(n)\varphi (mn) = \varphi (m) \varphi (n)

Explanation

n12345678910φ(n)1122426464dnφ(d)12345678910 \begin{matrix} n & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ \varphi(n) & 1 & 1 & 2 & 2 & 4 & 2 & 6 & 4 & 6 & 4 \\ \sum_{d \mid n} \varphi(d) & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \end{matrix} Yes, it is that totient function from elementary number theory. Given its numerous mysterious properties, it’s inevitably mentioned in analytic number theory as well.

Definition

[1]

Deduce directly according to the definition.

[2]

Deduce directly by dividing cases.

See Also


  1. Apostol. (1976). Introduction to Analytic Number Theory: p25. ↩︎