Divisor Function in Analytic Number Theory
📂Number Theory Divisor Function in Analytic Number Theory Definition For α ∈ C \alpha \in \mathbb{C} α ∈ C , the following σ α : N → C \sigma_{\alpha} : \mathbb{N} \to \mathbb{C} σ α : N → C is defined as a divisor function .
σ α ( n ) : = ∑ d ∣ n d α
\sigma_{\alpha} (n) := \sum_{d \mid n} d^{\alpha}
σ α ( n ) := d ∣ n ∑ d α
Basic Properties [1] Multiplicativity: For all m , n ∈ N m, n \in \mathbb{N} m , n ∈ N that satisfy gcd ( m , n ) = 1 \gcd (m,n) = 1 g cd( m , n ) = 1 , σ α ( m n ) = σ α ( m ) σ α ( n ) \sigma_{\alpha} (mn) = \sigma_{\alpha} (m) \sigma_{\alpha} (n) σ α ( mn ) = σ α ( m ) σ α ( n ) [2]: For a prime p p p and natural number a a a ,
σ α ( p a ) = { a + 1 , α = 0 p α ( a + 1 ) − 1 p α − 1 , α ≠ 0
\sigma_{\alpha} \left( p^{a} \right) = \begin{cases} a +1 & , \alpha = 0
\\ {{ p^{\alpha (a+1)} - 1 } \over { p^{\alpha} - 1 }} &,\alpha \ne 0 \end{cases}
σ α ( p a ) = { a + 1 p α − 1 p α ( a + 1 ) − 1 , α = 0 , α = 0 Explanation Especially
If α = 0 \alpha = 0 α = 0 , it can also be represented by the function d : = σ 0 d := \sigma_{0} d := σ 0 that indicates the number of divisors. If α = 1 \alpha = 1 α = 1 , it becomes the sigma function of elementary number theory σ : = σ 1 \sigma := \sigma_{1} σ := σ 1 . Proof [1] Dirichlet product and multiplicative property : If f f f and g g g are multiplicative functions, then f ∗ g f \ast\ g f ∗ g is also a multiplicative function.
Let’s define the unit function u u u and the power function N α N^{\alpha} N α as follows.
u ( n ) : = 1 N α ( n ) : = n α
u(n) := 1
\\ N^{\alpha} (n) := n^{\alpha}
u ( n ) := 1 N α ( n ) := n α
Since u u u and N α N^{\alpha} N α are multiplicative functions , their convolution
( N α ∗ u ) ( n ) = ∑ d ∣ n N α ( d ) u ( d n ) = ∑ d ∣ n d α = σ α ( n )
\left( N^{\alpha} \ast\ u \right)(n) = \sum_{d \mid n} N^{\alpha} (d) u \left( {{ d } \over { n }} \right) = \sum_{d \mid n} d^{\alpha} = \sigma_{\alpha} (n)
( N α ∗ u ) ( n ) = d ∣ n ∑ N α ( d ) u ( n d ) = d ∣ n ∑ d α = σ α ( n )
must also be a multiplicative function.
■
[2] Since the divisors of p a p^{a} p a are 1 , p , ⋯ , p a 1 , p , \cdots ,p^{a} 1 , p , ⋯ , p a ,
σ α ( n ) = 1 + p α + ⋯ + p a α
\sigma_{\alpha} ( n) = 1 + p^{\alpha} + \cdots + p^{a\alpha}
σ α ( n ) = 1 + p α + ⋯ + p a α
if α = 0 \alpha = 0 α = 0 ,
σ α ( n ) = 1 + 1 + ⋯ + 1 ⏟ a + 1 = a + 1
\sigma_{\alpha} ( n) = \underbrace{1 + 1 + \cdots + 1}_{a+1} = a + 1
σ α ( n ) = a + 1 1 + 1 + ⋯ + 1 = a + 1
if α ≠ 0 \alpha \ne 0 α = 0 , according to the geometric series formula ,
σ α ( n ) = p α ( a + 1 ) − 1 p α − 1
\sigma_{\alpha} ( n) = {{ p^{\alpha (a+1)} - 1 } \over { p^{\alpha} - 1 }}
σ α ( n ) = p α − 1 p α ( a + 1 ) − 1
■