logo

Divisor Function in Analytic Number Theory 📂Number Theory

Divisor Function in Analytic Number Theory

Definition 1

For αC\alpha \in \mathbb{C}, the following σα:NC\sigma_{\alpha} : \mathbb{N} \to \mathbb{C} is defined as a divisor function. σα(n):=dndα \sigma_{\alpha} (n) := \sum_{d \mid n} d^{\alpha}

Basic Properties

  • [1] Multiplicativity: For all m,nNm, n \in \mathbb{N} that satisfy gcd(m,n)=1\gcd (m,n) = 1, σα(mn)=σα(m)σα(n)\sigma_{\alpha} (mn) = \sigma_{\alpha} (m) \sigma_{\alpha} (n)
  • [2]: For a prime pp and natural number aa, σα(pa)={a+1,α=0pα(a+1)1pα1,α0 \sigma_{\alpha} \left( p^{a} \right) = \begin{cases} a +1 & , \alpha = 0 \\ {{ p^{\alpha (a+1)} - 1 } \over { p^{\alpha} - 1 }} &,\alpha \ne 0 \end{cases}

Explanation

Especially

  • If α=0\alpha = 0, it can also be represented by the function d:=σ0d := \sigma_{0} that indicates the number of divisors.
  • If α=1\alpha = 1, it becomes the sigma function of elementary number theory σ:=σ1\sigma := \sigma_{1}.

Proof

[1]

Dirichlet product and multiplicative property: If ff and gg are multiplicative functions, then f gf \ast\ g is also a multiplicative function.

Let’s define the unit function uu and the power function NαN^{\alpha} as follows. u(n):=1Nα(n):=nα u(n) := 1 \\ N^{\alpha} (n) := n^{\alpha} Since uu and NαN^{\alpha} are multiplicative functions, their convolution (Nα u)(n)=dnNα(d)u(dn)=dndα=σα(n) \left( N^{\alpha} \ast\ u \right)(n) = \sum_{d \mid n} N^{\alpha} (d) u \left( {{ d } \over { n }} \right) = \sum_{d \mid n} d^{\alpha} = \sigma_{\alpha} (n) must also be a multiplicative function.

[2]

Since the divisors of pap^{a} are 1,p,,pa1 , p , \cdots ,p^{a}, σα(n)=1+pα++paα \sigma_{\alpha} ( n) = 1 + p^{\alpha} + \cdots + p^{a\alpha} if α=0\alpha = 0, σα(n)=1+1++1a+1=a+1 \sigma_{\alpha} ( n) = \underbrace{1 + 1 + \cdots + 1}_{a+1} = a + 1 if α0\alpha \ne 0, according to the geometric series formula, σα(n)=pα(a+1)1pα1 \sigma_{\alpha} ( n) = {{ p^{\alpha (a+1)} - 1 } \over { p^{\alpha} - 1 }}


  1. Apostol. (1976). Introduction to Analytic Number Theory: p38. ↩︎