두 벡터의 내적과 사잇각의 관계
Theorem
Let the angle between two vectors $\mathbf{a} = (a_{1}, a_{2}, a_{3})$ and $\mathbf{b} = (b_{1}, b_{2}, b_{3})$ be $\theta$. Then, the following holds.
$$ \mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta $$
Here, $\mathbf{a} \cdot \mathbf{b}$ is the dot product (inner product) of the two vectors.
Corollary
The necessary and sufficient condition for two non-zero vectors $\mathbf{a}$ and $\mathbf{b}$ to be orthogonal is as follows.
$$ \mathbf{a} \cdot \mathbf{b} = 0 $$
Proof
Consider the diagram below. Vectors $\mathbf{a}$ and $\mathbf{b}$, along with $\mathbf{a} - \mathbf{b}$, form a triangle.
Now, applying the law of cosines to this triangle, we obtain the following.
$$ |\mathbf{a}|^2 + |\mathbf{b}|^2 - 2 |\mathbf{a}| |\mathbf{b}| \cos \theta = | \mathbf{a} - \mathbf{b} |^2 $$
By the properties of the dot product $\mathbf{a} \cdot \mathbf{a} = | \mathbf{a} |^{2}$, the equation becomes:
$$ \begin{align*} \mathbf{a} \cdot \mathbf{a} + \mathbf{b} \cdot \mathbf{b} - 2 |\mathbf{a}| |\mathbf{b}| \cos \theta &= (\mathbf{a} - \mathbf{b}) \cdot (\mathbf{a} - \mathbf{b}) \\ &= \mathbf{a} \cdot \mathbf{a} - 2 \mathbf{a} \cdot \mathbf{b} + \mathbf{b} \cdot \mathbf{b} \end{align*} $$
Eliminating the common terms yields:
$$ \mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta $$
■
Proof of the Corollary
$(\Longrightarrow)$
Assume $\mathbf{a}$ and $\mathbf{b}$ are orthogonal. Then,
$$ \mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \frac{\pi}{2} = 0 $$
Let $(\Longleftarrow)$ and $\mathbf{a} \cdot \mathbf{b} = 0$ be true. Then,
$$ |\mathbf{a}| |\mathbf{b}| \cos \theta = 0 $$
Since $\mathbf{a}$ and $\mathbf{b}$ are non-zero vectors, $|\mathbf{a}| \ne 0$ and $|\mathbf{b}| \ne 0$ hold. Therefore,
$$ \cos\theta = 0 \implies \theta = \frac{\pi}{2} $$
■