logo

Limits and Continuity of Vector-Valued Functions 📂Vector Analysis

Limits and Continuity of Vector-Valued Functions

Definition1

Let the vector function r:RR3\mathbf{r} : \mathbb{R} \to \mathbb{R}^{3} for three scalar functions f,g,h:RRf, g, h: \mathbb{R} \to \mathbb{R} be given as follows. r(t)=(f(t),g(t),h(t)) \mathbf{r}(t) = \left( f(t), g(t), h(t) \right)

Define the limit of r\mathbf{r} at aa as follows.

limtar(t)=(limtaf(t),limtag(t),limtah(t)) \lim\limits_{t \to a} \mathbf{r}(t) = \left( \lim\limits_{t \to a} f(t), \lim\limits_{t \to a} g(t), \lim\limits_{t \to a} h(t) \right)

We say that r\mathbf{r} is continuous at aa if the following equation holds.

limtar(t)=r(a) \lim\limits_{t \to a} \mathbf{r}(t) = \mathbf{r}(a)

Explanation

This extends the definition of the limit and continuity of scalar functions directly. It is similarly defined for nn dimensions. For r(t)=(f1(t),,fn(t))\mathbf{r}(t) = \left( f_{1}(t), \dots, f_{n}(t) \right),

limtar(t)=(limtaf1(t),,limtafn(t)) \lim\limits_{t \to a} \mathbf{r}(t) = \left( \lim\limits_{t \to a} f_{1}(t), \dots, \lim\limits_{t \to a} f_{n}(t) \right)


  1. James Stewart, Daniel Clegg, and Saleem Watson, Calculus (early transcendentals, 9E), p890 ↩︎