logo

If It Is a Regular Martingale, It Is a Uniformly Integrable Martingale 📂Probability Theory

If It Is a Regular Martingale, It Is a Uniformly Integrable Martingale

Definition

Let there be a given probability space (Ω,F,P)( \Omega , \mathcal{F} , P). When a set of random variables Φ\Phi is given, if for all ε>0\varepsilon>0 there exists a kNk \in \mathbb{N} that satisfies supXΦ(Xk)XdP<ε \sup_{ X \in \Phi } \int_{ \left( \left| X \right| \ge k \right) } \left| X \right| dP < \varepsilon , then Φ\Phi is said to be uniformly integrable. If a stochastic process {Xn}\left\{ X_{n} \right\} is uniformly integrable, then a martingale {(Xn,Fn)}\left\{ ( X_{n} , \mathcal{F}_{n} ) \right\} is said to be uniformly integrable.

Theorem

If a martingale {(Xn,Fn)}\left\{ ( X_{n} , \mathcal{F}_{n} ) \right\} is regular, it is uniformly integrable.

Explanation

Understanding why we consider Xk|X| \ge k makes it easier to accept the definition. Asking whether something is uniformly integrable in probability theory is the same as asking whether a stochastic process always possesses a first moment. In other words, it’s about checking EXn<E |X_{n}| <\infty, and if a natural number kNk \in \mathbb{N} is fixed, EXn=(Xnk)XndP+(Xn<k)XndP E |X_{n}| = \int_{ \left( \left| X_{n} \right| \ge k \right) } \left| X_{n} \right| dP + \int_{ \left( \left| X_{n} \right| < k \right) } \left| X_{n} \right| dP then (Xn<k)XndP<(Xn<k)kdP<ΩkdP<kP(Ω)< \begin{align*} \int_{ \left( \left| X_{n} \right| < k \right) } \left| X_{n} \right| dP <& \int_{ \left( \left| X_{n} \right| < k \right) } k dP \\ <& \int_{ \Omega } k dP \\ <& k P ( \Omega ) \\ <& \infty \end{align*} and there’s no need to think about (Xn<k)XndP\displaystyle \int_{ \left( \left| X_{n} \right| < k \right) } \left| X_{n} \right| dP, only needing to check if (Xnk)XndP\displaystyle \int_{ \left( \left| X_{n} \right| \ge k \right) } \left| X_{n} \right| dP is finite.

Proof

It suffices to show that for all ε>0\varepsilon > 0 there exists a kNk \in \mathbb{N} that satisfies: supnN(Xnk)XndP<ε \sup_{ n \in \mathbb{N} } \int_{ \left( \left| X_{n} \right| \ge k \right) } \left| X_{n} \right| dP < \varepsilon


Part 1. (Xnk)XndP(η>M)ηdP+MEXnk\displaystyle \int_{ \left( \left| X_{n} \right| \ge k \right) } \left| X_{n} \right| dP \le \int_{ \left( \left| \eta \right| > M \right) } | \eta| dP + M {{ E |X_{n} | } \over {k}}

Properties of conditional expectation:

  • [3]: If XX is F\mathcal{F}-measurable, then E(XF)=X a.s.E(X|\mathcal{F}) =X \text{ a.s.}
  • [10]: E(XG)E(XG) a.s.\left| E( X | \mathcal{G} ) \right| \le E ( | X | | \mathcal{G} ) \text{ a.s.}
  • [11]: For all sigma fields G\mathcal{G}, E[E(XG)]=E(X)E \left[ E ( X | \mathcal{G} ) \right] = E(X)

Since {(Xn,Fn)}\left\{ ( X_{n} , \mathcal{F}_{n} ) \right\} is a regular martingale, there exists an integrable random variable η\eta that satisfies Xn=E(ηFn)X_{n} = E \left( \eta | \mathcal{F}_{n} \right). According to the properties of conditional expectation [3] and [10], (Xnk)XndP=(Xnk)E(ηFn)dP(Xnk)E(ηFn)dP=(Xnk)ηdP \begin{align*} \int_{ \left( \left| X_{n} \right| \ge k \right) } \left| X_{n} \right| dP =& \int_{ \left( \left| X_{n} \right| \ge k \right) } \left| E \left( \eta | \mathcal{F}_{n} \right) \right| dP \\ \le & \int_{ \left( \left| X_{n} \right| \ge k \right) } E \left( | \eta| | \mathcal{F}_{n} \right) dP \\ =& \int_{ \left( \left| X_{n} \right| \ge k \right) } | \eta| dP \end{align*} Now, if we split (Xnk)\left( \left| X_{n} \right| \ge k \right) into two parts, (η>M)\left( \left| \eta \right| > M \right) and (ηM)\left( \left| \eta \right| \le M \right), (Xnk)XndP=(Xnk)(η>M)ηdP+(Xnk)(ηM)ηdP(η>M)ηdP+(Xnk)MdP(η>M)ηdP+MP(Xnk) \begin{align*} \int_{ \left( \left| X_{n} \right| \ge k \right) } \left| X_{n} \right| dP =& \int_{ \left( \left| X_{n} \right| \ge k \right) \cap \left( \left| \eta \right| > M \right) } | \eta| dP + \int_{ \left( \left| X_{n} \right| \ge k \right) \cap \left( \left| \eta \right| \le M \right)} | \eta| dP \\ \le & \int_{ \left( \left| \eta \right| > M \right) } | \eta| dP + \int_{ \left( \left| X_{n} \right| \ge k \right) } M dP \\ \le & \int_{ \left( \left| \eta \right| > M \right) } | \eta| dP + M P \left( \left| X_{n} \right| \ge k \right) \end{align*}

Markov’s inequality: P(u(X)c)E(u(X))c P(u(X) \ge c) \le {E(u(X)) \over c}

By Markov’s inequality, (Xnk)XndP(η>M)ηdP+MP(Xnk)(η>M)ηdP+MEXnk \begin{align*} \int_{ \left( \left| X_{n} \right| \ge k \right) } \left| X_{n} \right| dP \le & \int_{ \left( \left| \eta \right| > M \right) } | \eta| dP + M P \left( \left| X_{n} \right| \ge k \right) \\ \le & \int_{ \left( \left| \eta \right| > M \right) } | \eta| dP + M {{ E |X_{n} | } \over {k}} \end{align*}


Part 2. supnN(Xnk)XndP(η>M)ηdP+MkEη a.s.\displaystyle \sup_{n \in \mathbb{N}} \int_{ \left( \left| X_{n} \right| \ge k \right) } \left| X_{n} \right| dP \le \int_{ \left( \left| \eta \right| > M \right) } | \eta| dP + {{M} \over {k}} E | \eta | \text{ a.s.}

Since Xn=E(ηFn)X_{n} = E \left( \eta | \mathcal{F}_{n} \right), according to the properties of conditional expectation [10] and [11], EXn=EE(ηFn)EE(ηFn)Eη \begin{align*} E |X_{n} | =& E \left| E \left( \eta | \mathcal{F}_{n} \right) \right| \\ \le & E E \left( \left| \eta \right| | \mathcal{F}_{n} \right) \\ \le & E | \eta | \end{align*} thus, continuing from Part 1, the following inequality is obtained. (Xnk)XndP(η>M)ηdP+MkEη \int_{ \left( \left| X_{n} \right| \ge k \right) } \left| X_{n} \right| dP \le \int_{ \left( \left| \eta \right| > M \right) } | \eta| dP + {{M} \over {k}} E | \eta | This holds for all nNn \in \mathbb{N} and M>0M>0, so supnN(Xnk)XndP(η>M)ηdP+MkEη \sup_{n \in \mathbb{N}} \int_{ \left( \left| X_{n} \right| \ge k \right) } \left| X_{n} \right| dP \le \int_{ \left( \left| \eta \right| > M \right) } | \eta| dP + {{M} \over {k}} E | \eta |


Part 3. (η>M)ηdP<ε2\displaystyle \int_{ \left( \left| \eta \right| > M \right) } | \eta| dP < {{\varepsilon} \over {2}}

Dominated convergence theorem: For a measurable set EME \in \mathcal{M} and gL1(E)g \in \mathcal{L}^{1} (E), let a sequence of measurable functions {fn}\left\{ f_{n} \right\} almost everywhere satisfies fng|f_{n}| \le g in EE. If almost everywhere in EE satisfies f=limnfn\displaystyle f = \lim_{n \to \infty} f_{n}, then fL1(E)f \in \mathcal{L}^{1}(E) and limnEfn(x)dm=Efdm \lim_{ n \to \infty} \int_{E} f_{n} (x) dm = \int_{E} f dm

Since η1(η>M)η|\eta| \mathbb{1}_{\left( \left| \eta \right| > M \right) } \le | \eta|, by the dominated convergence theorem, limM(η>M)ηdP=limMΩη1(η>M)dP=ΩlimMη1(η>M)dP=0 \begin{align*} \lim_{M \to \infty} \int_{ \left( \left| \eta \right| > M \right) } | \eta | dP =& \lim_{M \to \infty} \int_{ \Omega } | \eta | \mathbb{1}_{\left( \left| \eta \right| > M \right) } dP \\ =& \int_{ \Omega } \lim_{M \to \infty} | \eta | \mathbb{1}_{\left( \left| \eta \right| > M \right) } dP \\ =& 0 \end{align*} In other words, for all ε2>0\displaystyle {{\varepsilon} \over {2}} > 0, there exists a MM that satisfies (η>M)ηdP<ε2 \int_{ \left( \left| \eta \right| > M \right) } | \eta| dP < {{\varepsilon} \over {2}}


Part 4. MkEη<ε2\displaystyle {{M} \over {k}} E | \eta | < {{\varepsilon} \over {2}}

Following Part 3, there exists a MM that satisfies supnN(Xnk)XndPε2+MkEη \sup_{n \in \mathbb{N}} \int_{ \left( \left| X_{n} \right| \ge k \right) } \left| X_{n} \right| dP \le {{\varepsilon} \over {2}} + {{M} \over {k}} E | \eta | This MM for all ε2>0\displaystyle {{\varepsilon} \over {2}} > 0 satisfies MkEη<ε2 {{M} \over {k}} E | \eta | < {{\varepsilon} \over {2}} Since there exists a kNk \in \mathbb{N} that satisfies the following for all ε>0\varepsilon >0, the regular martingale {(Xn,Fn)}\left\{ ( X_{n} , \mathcal{F}_{n} ) \right\} is uniformly integrable. supnN(Xnk)XndPε2+ε2=ε \sup_{n \in \mathbb{N}} \int_{ \left( \left| X_{n} \right| \ge k \right) } \left| X_{n} \right| dP \le {{\varepsilon} \over {2}} + {{\varepsilon} \over {2}} = \varepsilon