If It Is a Regular Martingale, It Is a Uniformly Integrable Martingale
📂Probability TheoryIf It Is a Regular Martingale, It Is a Uniformly Integrable Martingale
Definition
Let there be a given probability space (Ω,F,P). When a set of random variables Φ is given, if for all ε>0 there exists a k∈N that satisfies
X∈Φsup∫(∣X∣≥k)∣X∣dP<ε,
then Φ is said to be uniformly integrable. If a stochastic process {Xn} is uniformly integrable, then a martingale {(Xn,Fn)} is said to be uniformly integrable.
Theorem
If a martingale {(Xn,Fn)} is regular, it is uniformly integrable.
Explanation
Understanding why we consider ∣X∣≥k makes it easier to accept the definition. Asking whether something is uniformly integrable in probability theory is the same as asking whether a stochastic process always possesses a first moment. In other words, it’s about checking E∣Xn∣<∞, and if a natural number k∈N is fixed,
E∣Xn∣=∫(∣Xn∣≥k)∣Xn∣dP+∫(∣Xn∣<k)∣Xn∣dP
then
∫(∣Xn∣<k)∣Xn∣dP<<<<∫(∣Xn∣<k)kdP∫ΩkdPkP(Ω)∞
and there’s no need to think about ∫(∣Xn∣<k)∣Xn∣dP, only needing to check if ∫(∣Xn∣≥k)∣Xn∣dP is finite.
Proof
It suffices to show that for all ε>0 there exists a k∈N that satisfies:
n∈Nsup∫(∣Xn∣≥k)∣Xn∣dP<ε
Part 1. ∫(∣Xn∣≥k)∣Xn∣dP≤∫(∣η∣>M)∣η∣dP+MkE∣Xn∣
Properties of conditional expectation:
- [3]: If X is F-measurable, then E(X∣F)=X a.s.
- [10]: ∣E(X∣G)∣≤E(∣X∣∣G) a.s.
- [11]: For all sigma fields G, E[E(X∣G)]=E(X)
Since {(Xn,Fn)} is a regular martingale, there exists an integrable random variable η that satisfies Xn=E(η∣Fn). According to the properties of conditional expectation [3] and [10],
∫(∣Xn∣≥k)∣Xn∣dP=≤=∫(∣Xn∣≥k)∣E(η∣Fn)∣dP∫(∣Xn∣≥k)E(∣η∣∣Fn)dP∫(∣Xn∣≥k)∣η∣dP
Now, if we split (∣Xn∣≥k) into two parts, (∣η∣>M) and (∣η∣≤M),
∫(∣Xn∣≥k)∣Xn∣dP=≤≤∫(∣Xn∣≥k)∩(∣η∣>M)∣η∣dP+∫(∣Xn∣≥k)∩(∣η∣≤M)∣η∣dP∫(∣η∣>M)∣η∣dP+∫(∣Xn∣≥k)MdP∫(∣η∣>M)∣η∣dP+MP(∣Xn∣≥k)
Markov’s inequality:
P(u(X)≥c)≤cE(u(X))
By Markov’s inequality,
∫(∣Xn∣≥k)∣Xn∣dP≤≤∫(∣η∣>M)∣η∣dP+MP(∣Xn∣≥k)∫(∣η∣>M)∣η∣dP+MkE∣Xn∣
Part 2. n∈Nsup∫(∣Xn∣≥k)∣Xn∣dP≤∫(∣η∣>M)∣η∣dP+kME∣η∣ a.s.
Since Xn=E(η∣Fn), according to the properties of conditional expectation [10] and [11],
E∣Xn∣=≤≤E∣E(η∣Fn)∣EE(∣η∣∣Fn)E∣η∣
thus, continuing from Part 1, the following inequality is obtained.
∫(∣Xn∣≥k)∣Xn∣dP≤∫(∣η∣>M)∣η∣dP+kME∣η∣
This holds for all n∈N and M>0, so
n∈Nsup∫(∣Xn∣≥k)∣Xn∣dP≤∫(∣η∣>M)∣η∣dP+kME∣η∣
Part 3. ∫(∣η∣>M)∣η∣dP<2ε
Dominated convergence theorem: For a measurable set E∈M and g∈L1(E), let a sequence of measurable functions {fn} almost everywhere satisfies ∣fn∣≤g in E. If almost everywhere in E satisfies f=n→∞limfn, then f∈L1(E) and
n→∞lim∫Efn(x)dm=∫Efdm
Since ∣η∣1(∣η∣>M)≤∣η∣, by the dominated convergence theorem,
M→∞lim∫(∣η∣>M)∣η∣dP===M→∞lim∫Ω∣η∣1(∣η∣>M)dP∫ΩM→∞lim∣η∣1(∣η∣>M)dP0
In other words, for all 2ε>0, there exists a M that satisfies
∫(∣η∣>M)∣η∣dP<2ε
Part 4. kME∣η∣<2ε
Following Part 3, there exists a M that satisfies
n∈Nsup∫(∣Xn∣≥k)∣Xn∣dP≤2ε+kME∣η∣
This M for all 2ε>0 satisfies
kME∣η∣<2ε
Since there exists a k∈N that satisfies the following for all ε>0, the regular martingale {(Xn,Fn)} is uniformly integrable.
n∈Nsup∫(∣Xn∣≥k)∣Xn∣dP≤2ε+2ε=ε
■