logo

Hardy-Littlewood Maximal Function 📂Measure Theory

Hardy-Littlewood Maximal Function

Definition1

Let’s denote $ f \in L^1_{\mathrm{loc}}$. Then, the Hardy-Littlewood maximal function $Hf$ is defined as follows:

$$ Hf (x) := \sup \limits_{r>0} A_{r} |f|(x) = \sup \limits_{r>0} \frac{1}{\mu \big( B(r,x) \big)}\int_{B(r,x)}|f(y)|dy $$

$A_{r}f(x)$ represents the average of the function values of $B_{r}(x)$ on the top of $f$. $H$ is called the maximal operator.

Theorem

  • $Hf$ is a Lebesgue measurable function.
  • If $f \in L^1_{\mathrm{loc}}$, then $A_{r}f(x)$ is continuous with respect to both $r>0$ and $x \in \mathbb{R}^n$.

  1. Gerald B. Folland, Real Analysis: Modern Techniques and Their Applications (2nd Edition, 1999), p96 ↩︎