Selective Sampling Theorem Proof
📂Probability TheorySelective Sampling Theorem Proof
Theorem
Let’s assume there is a probability space (Ω,F,P) and a supermartingale {(Xn,Fn)}.
If τ and σ are bounded stopping times with respect to σ≤τ and Fn then
E(Xτ∣Fσ)≤Xσ a.s.
- Being bounded with respect to Fn for τ means, quite literally, that there exists a N∈N such that for all E∈Fn it satisfies τ(E)≤N.
Description
What the equation essentially says is that when there is a condition σ≤τ≤N, the condition of the supermartingale
E(Xσ+1∣F)≤Xσ a.s.
even if changed to τ
E(Xτ∣F)≤Xσ a.s.
the direction of the inequality is maintained as it is.
Proof
Part 1. 1(σ=b)1(τ≥n)=1(σ=n)
Since σ≤τ, it follows that (σ=n)⊂(τ≥n), and 1(σ=b)1(τ≥n)=1(σ=n)
Part 2. (τ≥n+1)∈Fn
Considering that (τ<n+1)=(τ≤n)∈Fn and given (τ<n+1)=(τ≥n+1)c, by the definition of sigma-fields, (τ≥n+1)∈Fn must follow.
Part 3. Xn1(σ=n)≥E(Xτ∣Fn1(σ=n))
Let’s consider the scenario when n=1,⋯,N.
Properties of Conditional Expectation: If X is F-measurable, then E(X∣F)=X a.s.
Due to the properties of conditional expectation and indicator functions, along with Part 1 and 2, for every event A∈Fn
=====∫AXn1(σ=n)dP−∫AE(Xτ∣Fn)1(σ=n)dP∫AXn1(σ=n)1(τ≥n)dP−∫AE(Xτ∣Fn)1(σ=n)1(τ≥n)dP∫A∩(σ=n)∩(τ≥n)XndP−∫A∩(σ=n)∩(τ≥n)E(Xτ∣Fn)dP∫A∩(σ=n)∩(τ≥n)E(Xn∣Fn)dP−∫A∩(σ=n)∩(τ≥n)E(Xτ∣Fn)dP∫A∩(σ=n)∩(τ≥n)E(Xn−Xτ∣Fn)dP∫A∩(σ=n)∩(τ≥n)(Xn−Xτ)dP
Splitting the integral range from (τ≥n) into (τ>n) and (τ=n) shows that since (Xτ−Xn)=0 from (τ=n)
==∫A∩(σ=n)∩(τ≥n)(Xn−Xτ)dP∫A∩(σ=n)∩(τ≥n+1)(Xn−Xτ)dP+∫A∩(σ=n)∩(τ=n)(Xn−Xτ)dP∫A∩(σ=n)∩(τ≥n+1)(Xn−Xτ)dP+0
Given that {(Xn,Fn)} is a supermartingale and Xτ is Fn-measurable, it follows that Xτ=E(Xτ∣Fn) a.s.
=≥==≥≥==∫A∩(σ=n)∩(τ≥n+1)(Xn−Xτ)dP∫A∩(σ=n)∩(τ≥n+1)XndP−∫A∩(σ=n)∩(τ≥n+1)XτdP∫A∩(σ=n)∩(τ≥n+1)E(Xn+1∣Fn)dP−∫A∩(σ=n)∩(τ≥n+1)E(Xτ∣Fn)dP∫A∩(σ=n)∩(τ≥n+1)E(Xn+1−Xτ∣Fn)dP∫A∩(σ=n)∩(τ≥n+1)(Xn+1−Xτ)dP∫A∩(σ=n)∩(τ≥n+2)(Xn+2−Xτ)dP⋮∫A∩(σ=n)∩(τ≥N)(XN−Xτ)dP∫A∩(σ=n)∩(τ=N)(XN−Xτ)dP0 a.s.
Then, starting from the initial equation
∫AXn1(σ=n)dP≥∫AE(Xτ∣Fn)1(σ=n)dP a.s.
and since ∀A∈F,∫Afdm=0⟺f=0 a.e.,
Xn1(σ=n)≥E(Xτ∣Fn)1(σ=n) a.s.
Part 4. E(Xτ∣F)≤Xσ a.s.
Properties of Stopping Times: If Zn is a Fn-measurable function, then Zn1σ=n is a function measurable with respect to both Fσ and Fn. Moreover, Zn1(σ=n)=Zσ1(σ=n) holds true.
According to the properties of stopping times and Part 3, for n=1,⋯,N
⟺⟺Xn1(σ=n)≥E(Xτ∣Fn)1(σ=n)Xσ1(σ=n)≥E(Xτ∣Fσ)1(σ=n)Xσ≥E(Xτ∣Fσ)
■