logo

Proof of Conditional Jensen's Inequality 📂Probability Theory

Proof of Conditional Jensen's Inequality

Theorem

Given a probability space (Ω,F,P)( \Omega , \mathcal{F} , P) and a sub-sigma field GF\mathcal{G} \subset \mathcal{F}, let’s assume XX is a random variable.

Regarding the convex function ϕ:RR\phi : \mathbb{R} \to \mathbb{R} and ϕ(X)L1(Ω)\phi (X) \in \mathcal{L}^{1} ( \Omega ) , ϕ(E(XG))E(ϕ(X)G) \phi \left( E \left( X | \mathcal{G} \right) \right) \le E \left( \phi (X) | \mathcal{G} \right)


  • A function is said to be convex if, for all x,yRx,y \in \mathbb{R} and α[0,1]\alpha \in [0,1], it satisfies the following: ϕ(αx+(1α)y)αϕ(x)+(1α)ϕ(y) \phi ( \alpha x + (1 - \alpha ) y ) \le \alpha \phi (x) + (1 - \alpha ) \phi (y)
  • G\mathcal{G} being a sub-sigma field of F\mathcal{F} means they are both sigma fields of Ω\Omega, but GF\mathcal{G} \subset \mathcal{F}.

Description

The conditional Jensen’s inequality guarantees that the expected value form of Jensen’s inequality applies the same way conditionally, as the name implies.

Proof

Properties of conditional expectation:

  • If XX is F\mathcal{F}-measurable, then E(XF)=X a.s.E(X|\mathcal{F}) =X \text{ a.s.}
  • For constants aa and bb, E(aX+bG)=aE(XG)+b a.s.E(aX + b | \mathcal{G}) = a E(X | \mathcal{G}) + b \text{ a.s.}

Since ϕ\phi is convex, for all μR\mu \in \mathbb{R}, ϕ(x)m(xμ)+ϕ(μ) \begin{align} \phi ( x ) \ge m ( x - \mu ) + \phi ( \mu) \end{align} there exists a slope mm that satisfies it. Now setting μ:=E(XG)\mu := E \left( X | \mathcal{G} \right) and taking the conditional expectation E(G)E \left( \cdot | \mathcal{G} \right) of (1)(1), both μ\mu and ϕ(E(XG))\phi \left( E \left( X | \mathcal{G} \right) \right) are G\mathcal{G}-measurable, thus E(ϕ(X)G)mE(XμG)+E(ϕ(μ)G)=mE(XG)mE(E(XG)G)+E(ϕ(μ)G)=mE(XG)mE(XG)+E(ϕ(μ)G)=E(ϕ(μ)G)=E(ϕ(E(XG))G)=ϕ(E(XG)) \begin{align*} E \left( \phi (X) | \mathcal{G} \right) \ge& m E \left( X - \mu | \mathcal{G} \right) + E \left( \phi ( \mu ) | \mathcal{G} \right) \\ =& m E \left( X | \mathcal{G} \right) - m E \left( E \left( X | \mathcal{G} \right) | \mathcal{G} \right) + E \left( \phi ( \mu ) | \mathcal{G} \right) \\ =& m E \left( X | \mathcal{G} \right) - m E \left( X | \mathcal{G} \right) + E \left( \phi ( \mu ) | \mathcal{G} \right) \\ =& E \left( \phi ( \mu ) | \mathcal{G} \right) \\ =& E \left( \phi \left( E \left( X | \mathcal{G} \right) \right) | \mathcal{G} \right) \\ =& \phi \left( E \left( X | \mathcal{G} \right) \right) \end{align*}

See Also