logo

Mean and Variance of Gamma Distribution 📂Probability Distribution

Mean and Variance of Gamma Distribution

Formula

Random Variable XX is said to be XΓ(k,θ)X \sim \Gamma \left( k , \theta \right) with respect to the Gamma Distribution Γ(k,θ)\Gamma \left( k , \theta \right). E(X)=kθVar(X)=kθ2 E(X) = k \theta \\ \Var (X) = k \theta^{2}

Derivation

Strategy: Directly infer using the definition of the gamma distribution and the basic properties of the gamma function. Use a trick to balance the numerator and denominator of the coefficients as the degree in xx changes.

Definition of Gamma Distribution: A continuous probability distribution with the following probability density function Γ(k,θ)\Gamma ( k , \theta ) for k,θ>0k, \theta > 0 is called the Gamma Distribution. f(x)=1Γ(k)θkxk1ex/θ,x>0 f(x) = {{ 1 } \over { \Gamma ( k ) \theta^{k} }} x^{k - 1} e^{ - x / \theta} \qquad , x > 0

Recursive Formula of the Gamma Function: Γ(p+1)=pΓ(p) \Gamma (p+1)=p\Gamma (p)

Mean

E(X)=0x1Γ(k)θkxk1exθdx=0kθΓ(k+1)θk+1xkexθdx=kθ \begin{align*} E(X) =& \int _{0} ^{\infty} x { 1 \over { \Gamma ( k ) \theta^k } } x^{k– 1} e^{ - {{x} \over {\theta }} } dx \\ =& \int _{0} ^{\infty} { {k \theta} \over { \Gamma (k+1) \theta^{k+1} } } x^{k} e^{ - {{x} \over {\theta}} } dx \\ =& {k \theta} \end{align*}

Variance

E(X2)=0x21Γ(k)θkxk1exθdx=0k(k+1)θ2Γ(k+2)θk+2xk+1exθdx=k2θ2+kθ2 \begin{align*} E( X^2 ) =& \int _{0} ^{\infty} x^2 { 1 \over { \Gamma (k) \theta^k} } x^{k– 1} e^{ - {{x} \over {\theta}} } dx \\ =& \int _{0} ^{\infty} { {k (k+ 1) \theta^2 } \over { \Gamma (k+2) \theta^{k+2} } } x^{k+1} e^{ - {{x} \over {\theta}} } dx \\ =& {k^2 \theta^2 + k \theta^2} \end{align*} Therefore, Var(X)=(k2θ2+kθ2)(kθ)2=kθ2 \begin{align*} \Var(X) =& (k^2 \theta^2 + k \theta^2) - (k \theta)^2 \\ =& k \theta^2 \end{align*}