logo

Solution of the Schrödinger Equation for a Potential Barrier 📂Quantum Mechanics

Solution of the Schrödinger Equation for a Potential Barrier

Overview

5D622FF81.jpg

Let’s explore how a particle behaves when the potential is in the form of a wall as shown in the figure above. The potential UU is

U(x)={0x<aU0a<x<a0a<x U(x) = \begin{cases} 0 & x<-a \\ U_{0} & -a < x <a \\ 0 &a<x \end{cases}

The time-independent Schrödinger equation when the potential is U(x)U(x) is

d2u(x)dx2+2m2[EU(x)]u(x)=0 \dfrac{d^2 u(x)}{dx^2}+\frac{2m}{\hbar ^2} \Big[ E-U(x) \Big]u(x)=0

Solution1

E<0E<0

Since there is no solution if the energy is less than the potential, it does not need to be considered.

0<E<U00 < E < U_{0}

Part 2-1. x<ax<-a In this region, the time-independent Schrödinger equation is

d2udx2+2m2Eu=0 \dfrac{d^2 u}{dx^2}+\frac{2m}{\hbar^2}Eu=0

As 2m2E\frac{2m}{\hbar^2}E is positive, by substituting k2k^2

d2udx2+k2u=0 \dfrac{d^2 u}{dx^2}+k^2u=0

Solving the equation yields the solution

u1(x)=A+eikx+Aeikx u_{1}(x)=A_{+}e^{ikx} + A_{-}e^{-ikx}

Here, A+A_{+} and AA_{-} are constants.

  • Part 2-2. a<x<a-a<x<a

    In this region, the time-independent Schrödinger equation is

    d2udx2+2m2(EU0)u=0 \dfrac{d^2 u}{dx^2}+\frac{2m}{\hbar^2}(E-U_{0})u=0

    Since EU0<0E-U_{0}<0, substituting 2m2(EU0)=κ2\frac{2m}{\hbar^2}(E-U_{0})=-\kappa ^2

    d2udx2κ2u=0 \dfrac{d^2 u}{dx^2}-\kappa^2 u=0

    Here, κ\kappa is the Greek letter ‘kappa’ and is different from kk (k). Solving the equation yields

    u2(x)=B+eκx+Beκx u_{2}(x) = B_{+}e^{\kappa x}+B_{-}e^{-\kappa x}

    Here, B+B_{+} and BB_{-} are constants.

  • Part 2-3. a<xa<x

    In this region, the time-independent Schrödinger equation is

    d2udx2+2m2Eu=0 \dfrac{d^2 u}{dx^2}+\frac{2m}{\hbar^2}Eu=0

    Since 2m2E=k2\frac{2m}{\hbar^2}E=k^2 was substituted in Part 2-1.

    d2udx2+k2u=0 \dfrac{d^2 u}{dx^2}+k^2u=0

    Solving the above differential equation yields

    u3(x)=C+eikx+Ceikx u_{3}(x)=C_{+}e^{ikx} + C_{-}e^{-ikx}

    As there are no reflective waves in this region, C=0C_{-}=0.

  • Part 2-4. Boundary Conditions

    Assuming wave functions are smooth, they are continuous at x=ax=-a and x=ax=a and the slope (derivative) of the wave functions is also continuous at x=ax=-a and x=ax=a. Therefore,

    {u1(a)=u2(a)u2(a)=u3(a)    {A+eika+Aeika=B+eκa+Beκa(1)B+eκa+Beκa=C+eika+0eika (2) \begin{cases}u_{1}(-a)=u_{2}(-a) \\ u_{2}(a)=u_{3}(a) \end{cases} \quad \implies \begin{cases} A_{+}e^{-ika}+A_{-}e^{ika} = B_{+}e^{-\kappa a}+B_{-}e^{\kappa a} \quad \cdots (1) \\ B_{+}e^{\kappa a}+B_{-}e^{-\kappa a} = C_{+}e^{ika}+0 \cdot e^{-ika} \ \quad \cdots (2) \end{cases}

    {u1(a)=u2(a)u2(a)=u3(a)    {ikA+eikaikAeika=κB+eκaκBeκa(3)κB+eκaκBeκa=ikC+eika+0ikeika(4) \begin{cases}u_{1}^{\prime}(-a)=u_{2}^{\prime}(-a) \\ u_{2}^{\prime}(a)=u_{3}^{\prime}(a) \end{cases} \quad \implies \begin{cases} ikA_{+}e^{-ika}-ikA_{-}e^{ika} = \kappa B_{+}e^{-\kappa a}-\kappa B_{-}e^{\kappa a} \quad \cdots (3) \\ \kappa B_{+}e^{\kappa a}-\kappa B_{-}e^{-\kappa a} = ik C_{+}e^{ika}+0 \cdot ik e^{-ika} \quad \cdots (4) \end{cases}

    Representing (1)(1) and (3)(3) as matrices,

    (eikaeikaikeikaikeika)(A+A)=(eκaeκaκeκaκeκa)(B+B)(5) \begin{pmatrix} e^{-ika} & e^{ika} \\ ike^{-ika} & -ike^{ika} \end{pmatrix} \begin{pmatrix} A_{+} \\ A_{-} \end{pmatrix} = \begin{pmatrix} e^{-\kappa a} & e^{\kappa a} \\ \kappa e^{-\kappa a} & -\kappa e^{\kappa a} \end{pmatrix} \begin{pmatrix} B_{+} \\ B_{-} \end{pmatrix}\quad \cdots (5)

    Representing (2)(2) and (4)(4) as matrices,

    (eκaeκaκeκaκeκa)(B+B)=(eikaeikaikeikaikeika)(C+0)(6) \begin{pmatrix} e^{\kappa a} & e^{-\kappa a} \\ \kappa e^{\kappa a} & -\kappa e^{-\kappa a} \end{pmatrix} \begin{pmatrix} B_{+} \\ B_{-} \end{pmatrix} = \begin{pmatrix} e^{ik a} & e^{-ik a} \\ ik e^{ik a} & -ik e^{-ika } \end{pmatrix} \begin{pmatrix} C_{+} \\ 0 \end{pmatrix}\quad \cdots (6)

    We are interested in the waves reflected and transmitted by the potential barrier and thus need to find A+A_{+}, AA_{-}, and C+C_{+}.

    By eliminating (B+B)\begin{pmatrix} B_{+}\\ B_{-}\end{pmatrix} to join (5)(5) and (6)(6), the leftmost matrix of (5)(5) is called A\mathbb{A} and the leftmost matrix of (6)(6) is called B\mathbb{B}. Then the two equations can be simplified as follows.

    (A+A)=A1(eκaeκaκeκaκeκa)(B+B)(7) \begin{pmatrix} A_{+} \\ A_{-} \end{pmatrix} =\mathbb{A}^{-1} \begin{pmatrix} e^{-\kappa a} & e^{\kappa a} \\ \kappa e^{-\kappa a} & -\kappa e^{\kappa a} \end{pmatrix} \begin{pmatrix} B_{+} \\ B_{-} \end{pmatrix} \quad \cdots (7)

    (B+B)=B1(eikaeikaikeikaikeika)(C+0)(8) \begin{pmatrix} B_{+} \\ B_{-} \end{pmatrix} =\mathbb{B}^{-1} \begin{pmatrix} e^{ik a} & e^{-ik a} \\ ik e^{ik a} & -ik e^{-ika } \end{pmatrix} \begin{pmatrix} C_{+} \\ 0 \end{pmatrix}\quad \cdots (8)

    By substituting (8)(8) into (7)(7),

    (A+A)=A1(eκaeκaκeκaκeκa)B1(eikaeikaikeikaikeika)(C+0)(9) \begin{pmatrix} A_{+} \\ A_{-} \end{pmatrix} =\mathbb{A}^{-1} \begin{pmatrix} e^{-\kappa a} & e^{\kappa a} \\ \kappa e^{-\kappa a} & -\kappa e^{\kappa a} \end{pmatrix} \mathbb{B}^{-1} \begin{pmatrix} e^{ik a} & e^{-ik a} \\ ik e^{ik a} & -ik e^{-ika } \end{pmatrix} \begin{pmatrix} C_{+} \\ 0 \end{pmatrix} \quad \cdots (9)

    Now computing A1\mathbb{A}^{-1} and B1\mathbb{B}^{-1} and the product of the matrices, we can obtain the coefficients. The computation process is detailed in Appendix Q-1. Through thorough calculations, we get the following results:

    AA+=iξsinh(2κa)ei2kacosh(2κa)+iηsinh(2κa) \dfrac{A_{-}}{A_{+}} = \frac{-i \xi \sinh (2\kappa a)e^{-i2ka} } {\cosh (2\kappa a) + i\eta \sinh (2\kappa a)}

    C+A+=ei2kacosh(2κa)+iηsinh(2κa) \dfrac{C_{+}}{A_{+}}=\frac{e^{-i2ka} }{\cosh (2\kappa a) +i \eta \sinh (2\kappa a)}

    Here, κkkκ=2η\frac{\kappa}{k} -\frac{k}{\kappa}=2\eta and κk+kκ=2ξ\frac{\kappa}{k} + \frac{k}{\kappa}=2\xi.

  • Part 2-5. Reflection Coefficient and Transmission Coefficient

    Incident wave, reflected wave, and transmitted wave are respectively

    uinc=A+eikx,uref=Aeikx,utrans=C+eikx u_{inc}=A_{+}e^{ikx},\quad u_{ref}=A_{-}e^{-ikx},\quad u_{trans}=C_{+}e^{ikx}

    To calculate the reflection and transmission coefficients, we find the probability current density for each:

    jinc=kmA+2,jref=kmA2,jtrnas=kmC+2 j_{inc}=\frac{\hbar k}{m}|A_{+}|^2,\quad j_{ref}=\frac{\hbar k}{m}|A_{-}|^2,\quad j_{trnas}=\frac{\hbar k}{m}|C_{+}|^2

    Therefore, the reflection and transmission coefficients are

    R=jrefjinc=AA+2=ξ2sinh2(2κa)cosh2(2κa)+η2sinh2(2κa) R=\left| \frac{j_{ref}}{j_{inc}}\right|=\left| \frac{A_{-}} {A_{+}} \right|^2= \frac{ \xi^2 \sinh ^2 (2\kappa a) } {\cosh^2 (2\kappa a) + \eta^2 \sinh ^2 (2\kappa a) }

    T=jtrnasjinc=C+A+2=1cosh2(2κa)+η2sinh2(2κa) T=\left| \frac{ j_{trnas} }{j_{inc}}\right|=\left| \frac{ C_{+} }{A_{+}} \right|^2=\frac{1}{\cosh^2 (2\kappa a) + \eta^2 \sinh^2 (2\kappa a)}

U0<EU_{0} < E

When looking at the diagram, it can be seen that except for Part 2-2., the rest of the results are the same as in 2. 0<E<U00 < E < U_{0}. Hence, using the previously obtained results,

  • Part 3-1. x<ax<-a

    u1(x)=A+eikx+Aeikx u_{1}(x)=A_{+}e^{ikx} + A_{-}e^{-ikx}

  • Part 3-2. a<x<a-a< x< a

    d2udx2+2m2(EU0)u=0 \dfrac{d^2 u}{dx^2}+\frac{2m}{\hbar^2}(E-U_{0})u=0

    Here, substituting EU0>0E-U_{0} >0 into 2m2(EU0)=κ2\frac{2m}{\hbar^2}(E-U_{0})=\kappa ^2,

    22m2(Eu0)a=nπ 2 \sqrt{ \frac{2m}{\hbar ^2}(E-u_{0})} a=n\pi

        8m2(EU0)a2=n2π2 \implies \frac{8m}{\hbar ^2} (E-U_{0}) a^2 =n^2\pi^2

        E=n2π228ma2+U0 \implies E=\frac{n^2 \pi^2 \hbar ^2}{8ma^{2}_{}}+U_{0}


  1. Stephen Gasiorowicz, 양자물리학(Quantum Physics, 서강대학교 물리학과 공역) (3rd Edition, 2005), p84-89 ↩︎