Let’s explore how a particle behaves when the potential is in the form of a wall as shown in the figure above. The potential U U U is
Part 2-2. − a < x < a -a<x<a − a < x < a
In this region, the time-independent Schrödinger equation is
d 2 u d x 2 + 2 m ℏ 2 ( E − U 0 ) u = 0
\dfrac{d^2 u}{dx^2}+\frac{2m}{\hbar^2}(E-U_{0})u=0
d x 2 d 2 u + ℏ 2 2 m ( E − U 0 ) u = 0
Since E − U 0 < 0 E-U_{0}<0 E − U 0 < 0 , substituting 2 m ℏ 2 ( E − U 0 ) = − κ 2 \frac{2m}{\hbar^2}(E-U_{0})=-\kappa ^2 ℏ 2 2 m ( E − U 0 ) = − κ 2
d 2 u d x 2 − κ 2 u = 0
\dfrac{d^2 u}{dx^2}-\kappa^2 u=0
d x 2 d 2 u − κ 2 u = 0
Here, κ \kappa κ is the Greek letter ‘kappa’ and is different from k k k (k). Solving the equation yields
u 2 ( x ) = B + e κ x + B − e − κ x
u_{2}(x) = B_{+}e^{\kappa x}+B_{-}e^{-\kappa x}
u 2 ( x ) = B + e κ x + B − e − κ x
Here, B + B_{+} B + and B − B_{-} B − are constants.
Part 2-3. a < x a<x a < x
In this region, the time-independent Schrödinger equation is
d 2 u d x 2 + 2 m ℏ 2 E u = 0
\dfrac{d^2 u}{dx^2}+\frac{2m}{\hbar^2}Eu=0
d x 2 d 2 u + ℏ 2 2 m E u = 0
Since 2 m ℏ 2 E = k 2 \frac{2m}{\hbar^2}E=k^2 ℏ 2 2 m E = k 2 was substituted in Part 2-1.
d 2 u d x 2 + k 2 u = 0
\dfrac{d^2 u}{dx^2}+k^2u=0
d x 2 d 2 u + k 2 u = 0
Solving the above differential equation yields
u 3 ( x ) = C + e i k x + C − e − i k x
u_{3}(x)=C_{+}e^{ikx} + C_{-}e^{-ikx}
u 3 ( x ) = C + e ik x + C − e − ik x
As there are no reflective waves in this region, C − = 0 C_{-}=0 C − = 0 .
Part 2-4. Boundary Conditions
Assuming wave functions are smooth, they are continuous at x = − a x=-a x = − a and x = a x=a x = a and the slope (derivative) of the wave functions is also continuous at x = − a x=-a x = − a and x = a x=a x = a . Therefore,
{ u 1 ( − a ) = u 2 ( − a ) u 2 ( a ) = u 3 ( a ) ⟹ { A + e − i k a + A − e i k a = B + e − κ a + B − e κ a ⋯ ( 1 ) B + e κ a + B − e − κ a = C + e i k a + 0 ⋅ e − i k a ⋯ ( 2 )
\begin{cases}u_{1}(-a)=u_{2}(-a)
\\ u_{2}(a)=u_{3}(a) \end{cases} \quad \implies \begin{cases} A_{+}e^{-ika}+A_{-}e^{ika} = B_{+}e^{-\kappa a}+B_{-}e^{\kappa a} \quad \cdots (1)
\\ B_{+}e^{\kappa a}+B_{-}e^{-\kappa a} = C_{+}e^{ika}+0 \cdot e^{-ika} \ \quad \cdots (2) \end{cases}
{ u 1 ( − a ) = u 2 ( − a ) u 2 ( a ) = u 3 ( a ) ⟹ { A + e − ika + A − e ika = B + e − κa + B − e κa ⋯ ( 1 ) B + e κa + B − e − κa = C + e ika + 0 ⋅ e − ika ⋯ ( 2 )
{ u 1 ′ ( − a ) = u 2 ′ ( − a ) u 2 ′ ( a ) = u 3 ′ ( a ) ⟹ { i k A + e − i k a − i k A − e i k a = κ B + e − κ a − κ B − e κ a ⋯ ( 3 ) κ B + e κ a − κ B − e − κ a = i k C + e i k a + 0 ⋅ i k e − i k a ⋯ ( 4 )
\begin{cases}u_{1}^{\prime}(-a)=u_{2}^{\prime}(-a)
\\ u_{2}^{\prime}(a)=u_{3}^{\prime}(a) \end{cases} \quad \implies \begin{cases} ikA_{+}e^{-ika}-ikA_{-}e^{ika} = \kappa B_{+}e^{-\kappa a}-\kappa B_{-}e^{\kappa a} \quad \cdots (3)
\\ \kappa B_{+}e^{\kappa a}-\kappa B_{-}e^{-\kappa a} = ik C_{+}e^{ika}+0 \cdot ik e^{-ika} \quad \cdots (4) \end{cases}
{ u 1 ′ ( − a ) = u 2 ′ ( − a ) u 2 ′ ( a ) = u 3 ′ ( a ) ⟹ { ik A + e − ika − ik A − e ika = κ B + e − κa − κ B − e κa ⋯ ( 3 ) κ B + e κa − κ B − e − κa = ik C + e ika + 0 ⋅ ik e − ika ⋯ ( 4 )
Representing ( 1 ) (1) ( 1 ) and ( 3 ) (3) ( 3 ) as matrices,
( e − i k a e i k a i k e − i k a − i k e i k a ) ( A + A − ) = ( e − κ a e κ a κ e − κ a − κ e κ a ) ( B + B − ) ⋯ ( 5 )
\begin{pmatrix}
e^{-ika} & e^{ika}
\\ ike^{-ika} & -ike^{ika}
\end{pmatrix} \begin{pmatrix}
A_{+}
\\ A_{-}
\end{pmatrix} = \begin{pmatrix}
e^{-\kappa a} & e^{\kappa a}
\\ \kappa e^{-\kappa a} & -\kappa e^{\kappa a}
\end{pmatrix} \begin{pmatrix}
B_{+}
\\ B_{-}
\end{pmatrix}\quad \cdots (5)
( e − ika ik e − ika e ika − ik e ika ) ( A + A − ) = ( e − κa κ e − κa e κa − κ e κa ) ( B + B − ) ⋯ ( 5 )
Representing ( 2 ) (2) ( 2 ) and ( 4 ) (4) ( 4 ) as matrices,
( e κ a e − κ a κ e κ a − κ e − κ a ) ( B + B − ) = ( e i k a e − i k a i k e i k a − i k e − i k a ) ( C + 0 ) ⋯ ( 6 )
\begin{pmatrix}
e^{\kappa a} & e^{-\kappa a}
\\ \kappa e^{\kappa a} & -\kappa e^{-\kappa a}
\end{pmatrix} \begin{pmatrix}
B_{+}
\\ B_{-}
\end{pmatrix} = \begin{pmatrix}
e^{ik a} & e^{-ik a}
\\ ik e^{ik a} & -ik e^{-ika }
\end{pmatrix} \begin{pmatrix}
C_{+}
\\ 0
\end{pmatrix}\quad \cdots (6)
( e κa κ e κa e − κa − κ e − κa ) ( B + B − ) = ( e ika ik e ika e − ika − ik e − ika ) ( C + 0 ) ⋯ ( 6 )
We are interested in the waves reflected and transmitted by the potential barrier and thus need to find A + A_{+} A + , A − A_{-} A − , and C + C_{+} C + .
By eliminating ( B + B − ) \begin{pmatrix} B_{+}\\ B_{-}\end{pmatrix} ( B + B − ) to join ( 5 ) (5) ( 5 ) and ( 6 ) (6) ( 6 ) , the leftmost matrix of ( 5 ) (5) ( 5 ) is called A \mathbb{A} A and the leftmost matrix of ( 6 ) (6) ( 6 ) is called B \mathbb{B} B . Then the two equations can be simplified as follows.
( A + A − ) = A − 1 ( e − κ a e κ a κ e − κ a − κ e κ a ) ( B + B − ) ⋯ ( 7 )
\begin{pmatrix}
A_{+}
\\ A_{-}
\end{pmatrix} =\mathbb{A}^{-1} \begin{pmatrix}
e^{-\kappa a} & e^{\kappa a}
\\ \kappa e^{-\kappa a} & -\kappa e^{\kappa a}
\end{pmatrix} \begin{pmatrix}
B_{+}
\\ B_{-}
\end{pmatrix} \quad \cdots (7)
( A + A − ) = A − 1 ( e − κa κ e − κa e κa − κ e κa ) ( B + B − ) ⋯ ( 7 )
( B + B − ) = B − 1 ( e i k a e − i k a i k e i k a − i k e − i k a ) ( C + 0 ) ⋯ ( 8 )
\begin{pmatrix}
B_{+}
\\ B_{-}
\end{pmatrix} =\mathbb{B}^{-1} \begin{pmatrix}
e^{ik a} & e^{-ik a}
\\ ik e^{ik a} & -ik e^{-ika }
\end{pmatrix} \begin{pmatrix}
C_{+}
\\ 0
\end{pmatrix}\quad \cdots (8)
( B + B − ) = B − 1 ( e ika ik e ika e − ika − ik e − ika ) ( C + 0 ) ⋯ ( 8 )
By substituting ( 8 ) (8) ( 8 ) into ( 7 ) (7) ( 7 ) ,
( A + A − ) = A − 1 ( e − κ a e κ a κ e − κ a − κ e κ a ) B − 1 ( e i k a e − i k a i k e i k a − i k e − i k a ) ( C + 0 ) ⋯ ( 9 )
\begin{pmatrix}
A_{+}
\\ A_{-}
\end{pmatrix} =\mathbb{A}^{-1} \begin{pmatrix}
e^{-\kappa a} & e^{\kappa a}
\\ \kappa e^{-\kappa a} & -\kappa e^{\kappa a}
\end{pmatrix} \mathbb{B}^{-1} \begin{pmatrix}
e^{ik a} & e^{-ik a}
\\ ik e^{ik a} & -ik e^{-ika }
\end{pmatrix} \begin{pmatrix}
C_{+}
\\ 0
\end{pmatrix} \quad \cdots (9)
( A + A − ) = A − 1 ( e − κa κ e − κa e κa − κ e κa ) B − 1 ( e ika ik e ika e − ika − ik e − ika ) ( C + 0 ) ⋯ ( 9 )
Now computing A − 1 \mathbb{A}^{-1} A − 1 and B − 1 \mathbb{B}^{-1} B − 1 and the product of the matrices, we can obtain the coefficients. The computation process is detailed in Appendix Q-1 . Through thorough calculations, we get the following results:
A − A + = − i ξ sinh ( 2 κ a ) e − i 2 k a cosh ( 2 κ a ) + i η sinh ( 2 κ a )
\dfrac{A_{-}}{A_{+}} = \frac{-i \xi \sinh (2\kappa a)e^{-i2ka} } {\cosh (2\kappa a) + i\eta \sinh (2\kappa a)}
A + A − = cosh ( 2 κa ) + i η sinh ( 2 κa ) − i ξ sinh ( 2 κa ) e − i 2 ka
C + A + = e − i 2 k a cosh ( 2 κ a ) + i η sinh ( 2 κ a )
\dfrac{C_{+}}{A_{+}}=\frac{e^{-i2ka} }{\cosh (2\kappa a) +i \eta \sinh (2\kappa a)}
A + C + = cosh ( 2 κa ) + i η sinh ( 2 κa ) e − i 2 ka
Here, κ k − k κ = 2 η \frac{\kappa}{k} -\frac{k}{\kappa}=2\eta k κ − κ k = 2 η and κ k + k κ = 2 ξ \frac{\kappa}{k} + \frac{k}{\kappa}=2\xi k κ + κ k = 2 ξ .
Part 2-5. Reflection Coefficient and Transmission Coefficient
Incident wave, reflected wave, and transmitted wave are respectively
u i n c = A + e i k x , u r e f = A − e − i k x , u t r a n s = C + e i k x
u_{inc}=A_{+}e^{ikx},\quad u_{ref}=A_{-}e^{-ikx},\quad u_{trans}=C_{+}e^{ikx}
u in c = A + e ik x , u re f = A − e − ik x , u t r an s = C + e ik x
To calculate the reflection and transmission coefficients, we find the probability current density for each:
j i n c = ℏ k m ∣ A + ∣ 2 , j r e f = ℏ k m ∣ A − ∣ 2 , j t r n a s = ℏ k m ∣ C + ∣ 2
j_{inc}=\frac{\hbar k}{m}|A_{+}|^2,\quad j_{ref}=\frac{\hbar k}{m}|A_{-}|^2,\quad j_{trnas}=\frac{\hbar k}{m}|C_{+}|^2
j in c = m ℏ k ∣ A + ∣ 2 , j re f = m ℏ k ∣ A − ∣ 2 , j t r na s = m ℏ k ∣ C + ∣ 2
Therefore, the reflection and transmission coefficients are
R = ∣ j r e f j i n c ∣ = ∣ A − A + ∣ 2 = ξ 2 sinh 2 ( 2 κ a ) cosh 2 ( 2 κ a ) + η 2 sinh 2 ( 2 κ a )
R=\left| \frac{j_{ref}}{j_{inc}}\right|=\left| \frac{A_{-}} {A_{+}} \right|^2= \frac{ \xi^2 \sinh ^2 (2\kappa a) } {\cosh^2 (2\kappa a) + \eta^2 \sinh ^2 (2\kappa a) }
R = j in c j re f = A + A − 2 = cosh 2 ( 2 κa ) + η 2 sinh 2 ( 2 κa ) ξ 2 sinh 2 ( 2 κa )
T = ∣ j t r n a s j i n c ∣ = ∣ C + A + ∣ 2 = 1 cosh 2 ( 2 κ a ) + η 2 sinh 2 ( 2 κ a )
T=\left| \frac{ j_{trnas} }{j_{inc}}\right|=\left| \frac{ C_{+} }{A_{+}} \right|^2=\frac{1}{\cosh^2 (2\kappa a) + \eta^2 \sinh^2 (2\kappa a)}
T = j in c j t r na s = A + C + 2 = cosh 2 ( 2 κa ) + η 2 sinh 2 ( 2 κa ) 1