logo

Holder's Inequality 📂Lebesgue Spaces

Holder's Inequality

Theorem1

Let ΩRn\Omega \subset \mathbb{R}^{n} be an open set. Assume 0<p<10 < p < 1 and p=pp1<0p^{\prime} = \dfrac{p}{p-1} < 0. If uu \in Lp(Ω)L^{p}(\Omega), uvuv\in L1(Ω)L^{1}(\Omega), then

0<Ωv(x)pdx< \begin{equation} 0 \lt \int_{\Omega} |v(x)|^{p^{\prime}}dx \lt \infty \end{equation}

the following inequality is established:

Ωu(x)v(x)dx(Ωu(x)pdx)1/p(Ωv(x)pdx)1/p \int_{\Omega} |u(x)v(x)|dx \ge \left( \int_{\Omega} |u(x)|^{p} dx \right)^{1/p} \left( \int_{\Omega} |v(x)|^{p^{\prime}} dx \right) ^{1/p^{\prime}}

Explanation

This is called the reverse Höelder’s inequality. It’s not a converse of the Höelder’s inequality, but a case where the direction of the inequality is reversed. Compared to the Höelder’s inequality, the direction of the inequality is exactly opposite.

  • Höelder’s inequality: When 1p1 \le p \le \infty, the right side is greater,
  • Reverse Höelder’s inequality: When 0<p<10 < p < 1, the left side is greater.

It’s important to note that up\| u \|_{p} is defined as follows, which becomes the norm of space LpL^{p} only when 1p<1 \le p < \infty:

up:=(u(x)pdx)1/p \| u \|_{p} :=\left( \int |u(x)|^p dx \right)^{1/p}

In other cases, up\| u \|_{p} is not the norm of the LpL^{p} space. Therefore, when 0<p<10 < p < 1, be aware that the integral on the right side of the inequality is not the norm p\left\| \cdot \right\|_{p}, p\left\| \cdot \right\|_{p^{\prime}} respectively.

Also, it’s a natural assumption that uvL1uv \in L^{1} is required for the inequality to have meaning.

Proof

Assume ϕ=vp\phi = | v |^{-p} and ψ=uvp\psi = | uv |^{p}. Then, ϕψ=up\phi\psi=| u |^{p}. If q=1pq = \dfrac{1}{p} is considered, since 0<p<10 < p < 1, 1<q<1 < q < \infty. Moreover, due to the assumption of uvL1uv \in L^1, it can be confirmed that ψLq\psi \in L^q.

ψqdx=uvpqdx=uvdx< \int |\psi|^q dx=\int |uv|^{pq}dx=\int |uv| dx <\infty

And if q=q/(q1)q^{\prime} = q/(q-1) is considered, since 1<q<1 < q < \infty, then 1<q<1 < q^{\prime} < \infty and p=pqp^{\prime} = -pq^{\prime}.

p=pp1=111p=11q=1ppq1=qpq1=pq p^{\prime}=\frac{p}{p-1}=\frac{1}{1-\frac{1}{p}}=\frac{1}{1-q}=-\frac{1}{p}\frac{p}{q-1}=-q\frac{p}{q-1}=-pq^{\prime}

Then, according to the assumption (1)(1), it can be shown that ϕLq\phi \in L^{q^{\prime}}.

ϕqdx=vpqdx=vpdx< \int |\phi |^{q^{\prime}} dx = \int |v|^{-pq^{\prime}} dx =\int |v|^{p^{\prime}} dx<\infty

Therefore, 1<q,q<1 < q, q^{\prime} < \infty and ψLp,ϕLq\psi \in L^{p}, \phi \in L^{q^{\prime}}, and by applying the Höelder’s inequality,

u(x)pdx= ϕ(x)ψ(x)dxψqϕq= (u(x)v(x)pqdx)1/q(v(x)pqdx)1/q= (u(x)v(x)dx)p(v(x)pdx)p/p \begin{align*} \int |u(x)|^pdx =&\ \int \left| \phi (x)\psi (x) \right| dx \\ \le& \| \psi \|_{q} \| \phi \|_{q^{\prime}} \\ =&\ \left( \int |u(x)v(x)|^{pq} dx\right)^{1/q} \left( \int | v(x) |^{-pq^{\prime}}dx \right)^{1/q^{\prime}} \\ =&\ \left( \int |u(x)v(x)| dx\right)^{p} \left( \int | v(x) |^{p^{\prime}}dx \right)^{-p / p^{\prime}} \end{align*}

Multiplying both sides by (vpdx)p/p\displaystyle \left(\int |v|^{p^{\prime}}dx \right)^{p/p^{\prime}} yields

(u(x)pdx)(v(x)pdx)p/p(u(x)v(x)dx)p \left( \int |u(x)|^{p} dx \right) \left( \int | v(x) |^{p^{\prime}}dx \right)^{p / p^{\prime}} \le \left( \int |u(x)v(x)| dx\right)^{p}

Lastly, multiplying the exponents of both sides by 1p\dfrac{1}{p} results in

(u(x)pdx)1/p(v(x)pdx)1/pu(x)v(x)dx \left( \int |u(x)|^pdx \right)^{1/p} \left( \int | v(x) |^{p^{\prime}}dx \right)^{ 1 / p^{\prime}} \le \int |u(x)v(x)| dx


  1. Robert A. Adams and John J. F. Foutnier, Sobolev Space (2nd Edition, 2003), p27-28 ↩︎