logo

Interpolation Inequalities in Lebesgue Spaces 📂Lebesgue Spaces

Interpolation Inequalities in Lebesgue Spaces

Theorem1

Let’s say ΩRn\Omega \subset \mathbb{R}^{n} is an open set. Suppose that for some θ\theta, 1p<q<r1 \le p \lt q\lt r \le \infty satisfies the following equation being 0<θ<10 \lt \theta \lt 1.

1q=θp+1θr \dfrac{1}{q} = \frac{\theta}{p} + \frac{1-\theta}{r}

Assume that uLp(Ω)Lr(Ω)u \in L^p(\Omega) \cap L^r(\Omega). Then, uLq(Ω)u\in L^{q}(\Omega) holds, and the following inequality is established.

uqupθur1θ \left\| u \right\|_{q} \le \left\| u \right\|_{p}^{\theta} \left\| u \right\|_{r}^{1-\theta}

This is called the interpolation inequality.

Explanation

Translating interpolation means interpolating, which implies the meaning of filling in the gaps.

For any p,rp, r that is greater than or equal to 1, if uLpu\in L^{p} and uLru\in L^{r}, then it is guaranteed that for all qq between pp and rr, uLqu\in L^q holds.

Proof

First, by multiplying both sides of the given assumption by qq, we have

1= θqp+(1θ)qr    1= 1pθq+1r(1θ)q \begin{align*} && 1 =&\ \dfrac{ \theta q}{p}+\dfrac{(1-\theta) q}{r} \\ \implies && 1 =&\ \dfrac{1}{\frac{p}{\theta q}}+\dfrac{1}{\frac{r}{(1-\theta)q}} \end{align*}

Thus, 1pθq\dfrac{1}{\frac{p}{\theta q}} and 1r(1θ)q\dfrac{1}{\frac{r}{(1-\theta)q}} are conjugate exponents satisfying the Hölder’s inequality. Now, let each be as follows.

s=pqθands=r(1θ)q s=\dfrac{p}{q\theta} \quad \text{and} \quad s^{\prime}=\dfrac{r}{(1-\theta)q}

Hölder’s inequality

For any 1p+1p=1\dfrac{1}{p} + \dfrac{1}{p^{\prime}} = 1 being 1p,p<1 \le p, p^{\prime} < \infty, if uLp(Ω)u \in L^p(\Omega) and vLp(Ω)v\in L^{p^{\prime}}(\Omega), then

Ωu(x)v(x)dxupvp \int_{\Omega} |u(x)v(x)| dx \le \| u \|_{p} \| v \|_{p^{\prime}}

  • Case 1. r<r \lt \infty

    It can be verified that uθqLs|u|^{\theta q} \in L^{s} and uq(1θ)Ls|u|^{q(1-\theta)} \in L^{s^{\prime}}.

    uθqss=Ω(u(x)qθ)sdx=Ωu(x)pdx< \left\| u^{\theta q} \right\|_{s}^{s} = \int_{\Omega} \left( |u(x)|^{q\theta} \right)^{s} dx = \int_{\Omega} |u(x)|^p dx \lt \infty

    uq(1θ)ss=Ω(u(x)q(1θ))sdx=Ωu(x)rdx< \left\| u^{q(1-\theta)} \right\|_{s^{\prime}}^{s^{\prime}}=\int_{\Omega} \left( |u(x)|^{q(1-\theta)} \right)^{s^{\prime}} dx=\int_{\Omega} |u(x)|^r dx \lt\infty

    Hence, we can use Hölder’s inequality. Calculating uqq\left\| u \right\|_{q}^{q} yields

    uqq= Ωu(x)qdx= Ωu(x)θqu(x)(1θ)qdxuθqsu(1θ)qsby Hoelder’s inequality= (Ωu(x)θqsdx)1/s(Ωu(x)(1θ)qsdx)1/s= (Ωu(x)pdx)1pqθ(Ωu(x)rdx)1r(1θ)q= upθqur(1θ)q \begin{align*} \left\| u \right\|_{q}^{q} =&\ \int_{\Omega} |u(x)|^{q} dx \\ =&\ \int_{\Omega} |u(x)|^{\theta q} |u(x)|^{(1-\theta)q} dx \\ \le& \left\| u^{\theta q} \right\|_{s} \left\| u^{(1-\theta)q} \right\|_{s^{\prime}} \quad \text{by Hoelder’s inequality} \\ =&\ \left( \int_{\Omega} |u(x)|^{\theta q s } dx \right)^{1/s} \left( \int_{\Omega} |u(x)|^{(1-\theta) q s^{\prime} } dx \right)^{1/s^{\prime}} \\ =&\ \left( \int_{\Omega} |u(x)|^{p} dx \right)^{\frac{1}{p}q\theta} \left( \int_{\Omega} |u(x)|^{r} dx \right)^{\frac{1}{r}(1-\theta)q} \\ =&\ \| u \|_{p}^{\theta q} \left\| u \right\|_{r}^{(1-\theta)q} \end{align*}

    By multiplying the exponent of both sides by 1q\dfrac{1}{q}, we get

    uqupθur1θ \left\| u \right\|_{q} \le \left\| u \right\|_{p}^{\theta} \left\| u \right\|_{r}^{1-\theta}

  • Case 2. r=r = \infty

    The condition of the assumption is such that 1q=θp\dfrac{1}{q} = \dfrac{\theta}{p}. Similarly, if we let s=pθq=1s=\frac{p}{\theta q}=1 having s=s^{\prime}=\infty and satisfying 1=1s+1s1=\frac{1}{s}+\frac{1}{s^{\prime}} with uθqLs=L1|u|^{\theta q} \in L^s=L^1 and u(1θ)qLs=L|u|^{(1-\theta)q} \in L^{s^{\prime}}=L^{\infty}.

    uθq1=Ωu(x)qθdx=Ωu(x)pdx< \left\| u^{\theta q} \right\|_{1}=\int_{\Omega} |u(x)|^{q\theta} dx=\int_{\Omega} |u(x)|^p dx \lt\infty

    If uLu\in L^{\infty}, it is easily understood by the definition of | \cdot|_\infty that for any positive number kk, ukL|u|^k \in L^{\infty} holds. Since (1θ)>0(1-\theta)\gt 0, thus u(1θ)qL|u|^{(1-\theta)q} \in L^{\infty}. Therefore, using Hölder’s inequality,

    uqq= Ωuqdx= Ωuθqu(1θ)qdxuθq1u(1θ)q= (Ωuθqdx)1u(1θ)q= (Ωupdx)1pqθu(1θ)q= upθqu(1θ)q= upθq u(1θ)q \begin{align*} \left\| u \right\|_{q}^{q} =&\ \int_{\Omega} |u|^q dx \\ =&\ \int_{\Omega} |u|^{\theta q} |u|^{(1-\theta)q}dx \\ \le& \left\| u^{\theta q} \right\|_{1} \left\| u^{(1-\theta)q} \right\|_{\infty} \\ =&\ \left( \int_{\Omega} |u|^{\theta q} dx \right)^{1} \left\| u^{(1-\theta)q} \right\|_{\infty} \\ =&\ \left( \int_{\Omega} |u|^{p} dx \right)^{\frac{1}{p}q\theta} \left\| u^{(1-\theta)q} \right\|_{\infty} \\ =&\ \| u \|_{p}^{\theta q} \left\| u^{(1-\theta)q} \right\|_{\infty} \\ =&\ \| u \|_{p}^{\theta q}\ \left\| u \right\|_{\infty}^{(1-\theta)q} \end{align*}

    The third line is established using Hölder’s inequality. The last line is established by the property of \left\| \cdot \right\| _{\infty}. Hence,

    uqupθu(1θ)=upθ ur(1θ) \left\| u \right\|_{q} \le \| u \|_{p}^{\theta } \left\| u \right\|_{\infty}^{(1-\theta)}= \| u \|_{p}^{\theta }\ |u|_{r}^{(1-\theta)}


  1. Robert A. Adams and John J. F. Foutnier, Sobolev Space (2nd Edition, 2003), p27 ↩︎