logo

Limits Supremum and Limits Infimum 📂Analysis

Limits Supremum and Limits Infimum

Definition

Let {xn}nN\left\{ x_{n} \right\}_{n \in \mathbb{N}}, {yn}nN\left\{ y_{n} \right\}_{n \in \mathbb{N}} be sequences of real numbers.

  1. lim supnxn:=limn(supknxk)\displaystyle \limsup_{n \to \infty} x_{n} := \lim_{n \to \infty} \left( \sup_{k \ge n} x_{k} \right) is called the limit supremum of {xn}\left\{ x_{n} \right\}.
  2. lim infnyn:=limn(infknyk)\displaystyle \liminf_{n \to \infty} y_{n} := \lim_{n \to \infty} \left( \inf_{k \ge n} y_{k} \right) is called the limit infimum of {yn}\left\{ y_{n} \right\}.

Where supknxk:=sup{xk:kn}\displaystyle \sup_{k \ge n} x_{k} := \sup \left\{ x_{k} : k \ge n \right\} and infknxk:=inf{xk:kn}\displaystyle \inf_{k \ge n} x_{k} := \inf \left\{ x_{k} : k \ge n \right\}.

Properties

  • (a): limkxnk=x    lim infnxnxlim supnxn \lim_{k \to \infty} x_{n_{k}} = x \implies \liminf_{n \to \infty} x_{n} \le x \le \limsup_{n \to \infty} x_{n}
  • (b): lim infnxn=x=lim supnxn    limnxn=x \liminf_{n \to \infty} x_{n} = x = \limsup_{n \to \infty} x_{n} \iff \lim_{n \to \infty} x_{n} = x
  • (c): lim infnxn=lim supn(xn)lim supnxn=lim infn(xn) \begin{align*} - \liminf_{n \to \infty} x_{n} =& \limsup_{n \to \infty} ( - x_{n} ) \\ - \limsup_{n \to \infty} x_{n} =& \liminf_{n \to \infty} ( - x_{n} ) \end{align*}
  • (d): If xnynx_{n} \le y_{n}, then lim supnxnlim supnynlim infnxnlim infnyn \begin{align*} \limsup_{n \to \infty} x_{n} \le& \limsup_{n \to \infty} y_{n} \\ \liminf_{n \to \infty} x_{n} \le& \liminf_{n \to \infty} y_{n} \end{align*}

Explanation

The concept of limit supremum is widely useful throughout analysis, introduced for convenience whether one agrees with it immediately or not. Intuitively, it helps to think about supremum and infimum while ‘discarding the initial part of the sequence’.

For example, when xk=1k\displaystyle x_{k} = {{ 1 } \over { k }}, let’s inspect the actual process of calculating supkn{xk}\displaystyle \sup_{k \ge n} \left\{ x_{k} \right\}.

n=3:sup{13,14,15,}=13 n=3 : \sup \left\{ {{ 1 } \over { 3 }} , {{ 1 } \over { 4 }} , {{ 1 } \over { 5 }} , \cdots \right\} = {{ 1 } \over { 3 }}

n=4:sup{14,15,}=14 n=4 : \sup \left\{ \quad {{ 1 } \over { 4 }} , {{ 1 } \over { 5 }} , \cdots \right\} = {{ 1 } \over { 4 }}

n=5:sup{15,}=15 n=5 : \sup \left\{ \quad \quad {{ 1 } \over { 5 }} , \cdots \right\} = {{ 1 } \over { 5 }}

n:supkn{1k:kN}=0 n \to \infty : \sup_{k \ge n} \left\{ {{ 1 } \over { k }} : k \in \mathbb{N} \right\} = 0

Thus, discarding the initial part implies that we are interested in speaking about a sufficiently large nn, and ultimately, it helps us understand its relevance to lim\lim.

Given limn{1k:kn}=\displaystyle \lim_{n \to \infty} \left\{ {{1} \over {k}} : k \ge n \right\} = \emptyset, therefore, not having suplimn{xn}\displaystyle \sup \lim_{n \to \infty} \left\{ x_{n} \right\} might make one appreciate why it’s sometimes necessary to introduce expressions like lim supn=limnsupkn\displaystyle \limsup_{n \to \infty} = \lim_{n \to \infty} \sup_{k \ge n}. While limits are considered, it’s sufficient to have nn, hence it’s reasonable to think in terms of the limit of another sequence sns_{n}.

On the other hand, considering yn=1(2)n1\displaystyle y_{n} = {{1} \over {(-2)^{n-1}}} gives us sup{yn}=1\sup \left\{ y_{n} \right\} = 1 and inf{yn}=12\displaystyle \inf \left\{ y_{n} \right\} = - {{1} \over {2}} but

lim supnyn=lim infnyn=0 \limsup_{n \to \infty} y_{n} = \liminf_{n \to \infty} y_{n} = 0

This serves as an example for property (b).