logo

The Relationship between L1 Space and L2 Space 📂Lebesgue Spaces

The Relationship between L1 Space and L2 Space

Definition

  • L1L^{1} Space

    A function ff is said to be (absolutely) integrable on the interval [a, b][a,\ b] if it satisfies the following equation.

    abf(x)dx< \int_{a}^b |f(x)| dx < \infty

    The set of functions that are integrable on the interval [a,b][a,b] is denoted as L1(a,b)L^{1}(a,b).

    L1(a,b)={f:abf(x)dx<} L^{1}(a,b)= \left\{ f : \int_{-a}^{b} |f(x)| dx < \infty \right\}

  • L2L^{2} Space

    A function satisfying the following equation is said to be square-integrable.

    abf(x)2dx< \int_{a}^b |f(x)|^{2} dx < \infty

    The set of square-integrable functions on the interval [a,b][a,b] is denoted as L2(a,b)L^{2}(a,b).

    L2(a,b):={f:abf(x)2dx<} L^{2}(a,b) := \left\{ f : \int_{a}^b |f(x)|^{2} dx < \infty \right\}

Explanation1

Unless specified otherwise, consider the interval as the entire real numbers R\mathbb{R}.

L1=L1(R)={f:f(x)dx<}L2=L2(R)={f:f(x)2dx<} \begin{align*} L^{1} &= L^{1}(\mathbb{R})=\left\{ f : \int_{-\infty}^{\infty} |f(x)| dx < \infty \right\} \\ L^{2} &= L^{2}(\mathbb{R})=\left\{ f : \int_{-\infty}^{\infty} |f(x)|^{2} dx < \infty \right\} \end{align*}

At first glance, it may seem like there is an inclusion relationship between the spaces L1L^{1} and L2L^{2}, but that is not the case at all.

L1L2,L2L1 L^{1} \nsubseteq L^{2},\quad L^{2} \nsubseteq L^{1}

For example, consider the following function.

f(x)={x23if 0<x<10otherwiseg(x)={x23if 1<x0otherwise \begin{align*} f(x) &= \begin{cases} x^{-\frac{2}{3}} & \mathrm{if}\ 0<x<1 \\ 0 & \mathrm{otherwise} \end{cases} \\ g(x) &= \begin{cases} x^{-\frac{2}{3}} & \mathrm{if}\ 1<x \\ 0 & \mathrm{otherwise} \end{cases} \end{align*}

Upon calculation, it is observed that ff is a L1L^{1} function but not a L2L^{2} function.

f(x)dx=01x23dx=[3x13]01<f(x)2dx=01x43dx=[3x13]01= \begin{align*} \int |f(x)|dx &= \int_{0}^1 x^{-\frac{2}{3}}dx=\left[ 3x^{\frac{1}{3}} \right]_{0}^1<\infty \\ \int |f(x)|^2dx &= \int_{0}^1 x^{-\frac{4}{3}}dx=\left[ -3x^{-\frac{1}{3}} \right]_{0}^1=\infty \end{align*}

Conversely, gg is a L2L^{2} function but not a L1L^{1} function.

g(x)dx=1x23dx=[3x13]1=g(x)2dx=1x43dx=[3x13]1< \begin{align*} \int |g(x)|dx &= \int_{1}^\infty x^{-\frac{2}{3}}dx=\left[ 3x^{\frac{1}{3}} \right]_{1}^\infty=\infty \\ \int |g(x)|^2dx &= \int_{1}^\infty x^{-\frac{4}{3}}dx=\left[ -3x^{-\frac{1}{3}} \right]_{1}^\infty<\infty \end{align*}

However, if the following condition is satisfied, a L1L^{1} function can also be a L2L^{2} function, or a L2L^{2} function can also be a L1L^{1} function. Moreover, if the integral interval is bounded, L2L1L^{2} \subset L^{1} holds.

Theorem

(a) Let fL1f \in L^{1} and assume ff is bounded. Then, fL2f \in L^{2} is true.

(b) If fL2f \in L^{2} and ff is 00 outside a finite interval, then fL1f \in L^{1} is true.

Proof

(a)

Assuming ff is bounded, a positive number MM exists.

fM |f| \le M

Therefore, f2Mf|f|^{2} \le M|f| is true. Thus, the following is satisfied.

f2dxMfdx=Mfdx< \int |f|^2dx \le \int M|f|dx=M\int |f|dx <\infty

(b)

By assumption, the following equation is true.

fdx=abfdx \int |f|dx=\int_{a}^b|f|dx

Then, by the Cauchy-Schwarz inequality x, yxy| \langle x,\ y \rangle | \le \|x\| \|y\|, the following is satisfied.

abfdx= ab1fdx= 1,f12f2= (ba)12(abf2dx)12< \begin{align*} \int_{a}^b|f|dx =&\ \int_{a}^b1\cdot |f|dx \\ =&\ \langle 1 , |f| \rangle \\ \le& \| 1 \|_{2} \| |f| \|_{2} \\ =&\ (b-a)^{\frac{1}{2}}\left( \int_{a}^b|f|^{2} dx\right)^{\frac{1}{2}} \\ <& \infty \end{align*}


  1. Gerald B. Folland, Fourier Analysis and Its Applications (1992), p205 ↩︎