Fourier Transform of Characteristic Functions
📂Fourier AnalysisFourier Transform of Characteristic Functions
The Fourier transform of the characteristic function is as follows:
F[χ[−a,a](x)]=ξ2sin(aξ)
Proof
F[χ[−a,a](x)]=∫−∞∞χ[−a,a](x)e−iξxdx=∫−aae−iξxdx=−iξ1e−iξx]−aa=−iξ1(e−iaξ−eiaξ)=ξ22ieiaξ−e−iaξ=ξ2sin(aξ)
■