logo

Generalized Hölder's Inequality, Corollaries of Hölder's Inequality 📂Lebesgue Spaces

Generalized Hölder's Inequality, Corollaries of Hölder's Inequality

Description

Let ΩRn\Omega \subset \mathbb{R}^{n} be called an open set. Suppose we are given two constants 1<p<,1<p<1 \lt p \lt \infty, 1 \lt p^{\prime} \lt \infty that satisfy the following equation:

1p+1p=1(or p=pp1) \dfrac{1}{p} + \dfrac{1}{p^{\prime}} = 1 \left(\text{or } p^{\prime} = \frac{p}{p-1} \right)

If uLp(Ω)u \in L^p(\Omega), vLp(Ω)v\in L^{p^{\prime}}(\Omega), then uvL1(Ω)uv \in L^1(\Omega) and the inequality below holds.

uv1=Ωu(x)v(x)dxupvp \| uv \|_{1} = \int_{\Omega} |u(x)v(x)| dx \le \| u \|_{p} \| v \|_{p^{\prime}}

The inequality in the above theorem is called the Hölder’s inequality. From Hölder’s inequality, the following two corollaries can easily be shown to hold.

Theorem1

Theorem 1

Suppose three constants p>0,q>0,r>0p>0, q>0, r>0 satisfy 1p+1q=1r\dfrac{1}{p} + \dfrac{1}{q} = \dfrac{1}{r} and if uLp(Ω),vLq(Ω)u \in {L}^{p}(\Omega), v \in {L}^{q}(\Omega), then uvLr(Ω)uv \in L^{r}(\Omega) and the inequality below holds.

uvr=(Ωu(x)v(x)rdx)1/rupvq \| uv \|_{r} = \left( \int_{\Omega} |u(x)v(x)|^{r} dx \right)^{1/r} \le \| u \|_{p} \| v \|_{q}


In the case of r=1r=1, it equals Hölder’s inequality.

Proof

By assumption,

1p+1q=1r    1p/r+1q/r=1 \dfrac{1}{p}+\dfrac{1}{q}=\dfrac{1}{r} \implies \dfrac{1}{p/r}+\dfrac{1}{q/r}=1

And since we assumed that uLp(Ω)u \in L^p(\Omega), (Ωupdx)1/p<\left( \int_{\Omega}|u|^p dx \right)^{1/p} < \infty, therefore,

(Ωurprdx)1/p<    (Ωurprdx)r/p< \left( \int_{\Omega}|u^r|^{\frac{p}{r}} dx \right)^{1/p} < \infty \implies \left( \int_{\Omega}|u^r|^{\frac{p}{r}} dx\right)^{r/p} < \infty

Thus, urLp/r(Ω)u^r \in {L}^{p/r}(\Omega) and vrLq/r(Ω)v^r \in{L}^{q/r}(\Omega) can be confirmed in the same way. So by Hölder’s inequality,

Ωu(x)v(x)rdx=Ωur(x)vr(x)dxurp/rvrq/r \int_{\Omega} |u(x)v(x)|^{r} dx = \int_{\Omega} |u^{r}(x)v^{r}(x) | dx \le \| u^r \|_{p/r} \|v^r\|_{q/r}

Rewriting the right side in integral form,

Ωu(x)v(x)rdx(Ωu(x)rp/rdx)q/p(Ωv(x)rq/rdx)r/q= (Ωu(x)pdx)r/p(Ωv(x)qdx)r/q \begin{align*} \int_{\Omega} |u(x)v(x)|^{r} dx \le& \left(\int_{\Omega} |u(x)^{r}|^{p/r} dx \right)^{q/p} \left(\int_{\Omega} |v(x)^r|^{q/r} dx \right)^{r/q} \\ =&\ \left(\int_{\Omega}|u(x)|^{p} dx \right)^{r/p} \left(\int_{\Omega} |v(x)|^{q} dx \right)^{r/q} \end{align*}

Taking the power of 1r\dfrac{1}{r} to both sides,

(Ωu(x)v(x)rdx)1/r(Ωu(x)pdx)1/p(Ωv(x)qdx)1/q \left( \int_{\Omega} |u(x)v(x)|^rdx \right)^{1/r} \le \left(\int_{\Omega}|u(x)|^{p} dx \right)^{1/p} \left(\int_{\Omega} |v(x)|^{q} dx \right)^{1/q}

Therefore,

uvr=(Ωu(x)v(x)rdx)1/rupvq \| uv \|_{r} = \left( \int_{\Omega} |u(x)v(x)|^rdx \right)^{1/r} \le \| u \|_{p} \| v\|_{q}

Theorem 2

Let’s say for 1jN1\le j \le N, pj>0p_{j}>0 and j=1N1pj=1p1+1p2++1pN=1r\sum\limits_{j=1}^N\dfrac{1}{{p}_{j}}=\dfrac{1}{{p}_{1}}+\dfrac{1}{{p}_2}+\cdots+\dfrac{1}{{p}_{N}}=\dfrac{1}{r}. And suppose u=j=1Nuj=u1u2uNu=\prod _{j=1}^N u_{j}=u_{1}u_2\dots u_{N} and ujLpj(Ω)u_{j}\in L^{{p}_{j}}(\Omega). Then uLr(Ω)u\in {L}^r (\Omega) and the inequality below holds.

ur=(Ωu(x)rdx)1/rj=1Nujpj=u1p1uNpN \| u \|_{r} = \left( \int_{\Omega} |u(x)|^{r} dx \right)^{1/r} \le \prod_{j=1}^{N} \| u_{j} \|_{{p}_{j}} = \| u_{1} \|_{{p}_{1}} \cdots \| u_{N} \|_{p_{N}}


The above Theorem 1 can be seen to hold not only for two functions but also for any NN number of functions.

Proof

We use mathematical induction. First, when N=2N=2, it holds by Theorem 1. Then, assuming it holds for N=kN=k, showing it also holds for N=k+1N=k+1 completes the proof.


Let’s say j=1k1pj=1r\sum\limits_{j=1}^k \dfrac{1}{{p}_{j}}=\dfrac{1}{r} and it holds for N=kN=k. Then, the following holds.

j=1Nujru1p1u2p2ukpk \left\| \prod_{j=1}^N u_{j} \right\|_{r} \le \| u_{1} \|_{p_{1}} \| u_{2} \|_{p_{2}} \cdots \| u_{k} \|_{p_{k}}

Now, let’s say j=1k+11pj=1r+1pk+1=1r\sum_{j=1}^{k+1}\dfrac{1}{{p}_{j}}=\dfrac{1}{r}+\dfrac{1}{{p}_{k+1}}=\dfrac{1}{r^{\prime}}. Then,

ur= (j=1kuj)uk+1rj=1k+1ujruk+1pk+1u1p1u2p2ukpkuk+1pk+1= j=1k+1ujpj \begin{align*} \| u \|_{r^{\prime}} =&\ \left\| \left( \prod_{j=1}^k u_{j} \right) u_{k+1} \right\|_{r^{\prime}} \\ \le& \left\| \prod \limits_{j=1}^{k+1}u_{j} \right\|_{r} \| u_{k+1} \|_{p_{k+1}} \\ \le& \| u_{1} \|_{p_{1}} \| u_{2} \|_{p_{2}} \cdots \| u_{k} \|_{p_{k}} \| u_{k+1} \| _{p_{k+1}} \\ =&\ \prod \limits_{j=1}^{k+1} \| u_{j}\|_{p_{j}} \end{align*}

The second line holds by Theorem 1. The third line holds by assumption. Therefore, assuming it holds for N=kN=k means it also holds for N=k+1N=k+1. Thus, the proof is completed by mathematical induction.

See also


  1. Robert A. Adams and John J. F. Foutnier, Sobolev Space (2nd Edition, 2003), p24-25 ↩︎