Generalized Hölder's Inequality, Corollaries of Hölder's Inequality
📂Lebesgue Spaces Generalized Hölder's Inequality, Corollaries of Hölder's Inequality Description Let Ω ⊂ R n \Omega \subset \mathbb{R}^{n} Ω ⊂ R n be called an open set . Suppose we are given two constants 1 < p < ∞ , 1 < p ′ < ∞ 1 \lt p \lt \infty, 1 \lt p^{\prime} \lt \infty 1 < p < ∞ , 1 < p ′ < ∞ that satisfy the following equation:
1 p + 1 p ′ = 1 ( or p ′ = p p − 1 )
\dfrac{1}{p} + \dfrac{1}{p^{\prime}} = 1 \left(\text{or } p^{\prime} = \frac{p}{p-1} \right)
p 1 + p ′ 1 = 1 ( or p ′ = p − 1 p )
If u ∈ L p ( Ω ) u \in L^p(\Omega) u ∈ L p ( Ω ) , v ∈ L p ′ ( Ω ) v\in L^{p^{\prime}}(\Omega) v ∈ L p ′ ( Ω ) , then u v ∈ L 1 ( Ω ) uv \in L^1(\Omega) uv ∈ L 1 ( Ω ) and the inequality below holds.
∥ u v ∥ 1 = ∫ Ω ∣ u ( x ) v ( x ) ∣ d x ≤ ∥ u ∥ p ∥ v ∥ p ′
\| uv \|_{1} = \int_{\Omega} |u(x)v(x)| dx \le \| u \|_{p} \| v \|_{p^{\prime}}
∥ uv ∥ 1 = ∫ Ω ∣ u ( x ) v ( x ) ∣ d x ≤ ∥ u ∥ p ∥ v ∥ p ′
The inequality in the above theorem is called the Hölder’s inequality . From Hölder’s inequality, the following two corollaries can easily be shown to hold.
Theorem Theorem 1 Suppose three constants p > 0 , q > 0 , r > 0 p>0, q>0, r>0 p > 0 , q > 0 , r > 0 satisfy 1 p + 1 q = 1 r \dfrac{1}{p} + \dfrac{1}{q} = \dfrac{1}{r} p 1 + q 1 = r 1 and if u ∈ L p ( Ω ) , v ∈ L q ( Ω ) u \in {L}^{p}(\Omega), v \in {L}^{q}(\Omega) u ∈ L p ( Ω ) , v ∈ L q ( Ω ) , then u v ∈ L r ( Ω ) uv \in L^{r}(\Omega) uv ∈ L r ( Ω ) and the inequality below holds.
∥ u v ∥ r = ( ∫ Ω ∣ u ( x ) v ( x ) ∣ r d x ) 1 / r ≤ ∥ u ∥ p ∥ v ∥ q
\| uv \|_{r} = \left( \int_{\Omega} |u(x)v(x)|^{r} dx \right)^{1/r} \le \| u \|_{p} \| v \|_{q}
∥ uv ∥ r = ( ∫ Ω ∣ u ( x ) v ( x ) ∣ r d x ) 1/ r ≤ ∥ u ∥ p ∥ v ∥ q
In the case of r = 1 r=1 r = 1 , it equals Hölder’s inequality.
Proof By assumption,
1 p + 1 q = 1 r ⟹ 1 p / r + 1 q / r = 1
\dfrac{1}{p}+\dfrac{1}{q}=\dfrac{1}{r} \implies \dfrac{1}{p/r}+\dfrac{1}{q/r}=1
p 1 + q 1 = r 1 ⟹ p / r 1 + q / r 1 = 1
And since we assumed that u ∈ L p ( Ω ) u \in L^p(\Omega) u ∈ L p ( Ω ) , ( ∫ Ω ∣ u ∣ p d x ) 1 / p < ∞ \left( \int_{\Omega}|u|^p dx \right)^{1/p} < \infty ( ∫ Ω ∣ u ∣ p d x ) 1/ p < ∞ , therefore,
( ∫ Ω ∣ u r ∣ p r d x ) 1 / p < ∞ ⟹ ( ∫ Ω ∣ u r ∣ p r d x ) r / p < ∞
\left( \int_{\Omega}|u^r|^{\frac{p}{r}} dx \right)^{1/p} < \infty \implies \left( \int_{\Omega}|u^r|^{\frac{p}{r}} dx\right)^{r/p} < \infty
( ∫ Ω ∣ u r ∣ r p d x ) 1/ p < ∞ ⟹ ( ∫ Ω ∣ u r ∣ r p d x ) r / p < ∞
Thus, u r ∈ L p / r ( Ω ) u^r \in {L}^{p/r}(\Omega) u r ∈ L p / r ( Ω ) and v r ∈ L q / r ( Ω ) v^r \in{L}^{q/r}(\Omega) v r ∈ L q / r ( Ω ) can be confirmed in the same way. So by Hölder’s inequality,
∫ Ω ∣ u ( x ) v ( x ) ∣ r d x = ∫ Ω ∣ u r ( x ) v r ( x ) ∣ d x ≤ ∥ u r ∥ p / r ∥ v r ∥ q / r
\int_{\Omega} |u(x)v(x)|^{r} dx = \int_{\Omega} |u^{r}(x)v^{r}(x) | dx \le \| u^r \|_{p/r} \|v^r\|_{q/r}
∫ Ω ∣ u ( x ) v ( x ) ∣ r d x = ∫ Ω ∣ u r ( x ) v r ( x ) ∣ d x ≤ ∥ u r ∥ p / r ∥ v r ∥ q / r
Rewriting the right side in integral form,
∫ Ω ∣ u ( x ) v ( x ) ∣ r d x ≤ ( ∫ Ω ∣ u ( x ) r ∣ p / r d x ) q / p ( ∫ Ω ∣ v ( x ) r ∣ q / r d x ) r / q = ( ∫ Ω ∣ u ( x ) ∣ p d x ) r / p ( ∫ Ω ∣ v ( x ) ∣ q d x ) r / q
\begin{align*}
\int_{\Omega} |u(x)v(x)|^{r} dx \le& \left(\int_{\Omega} |u(x)^{r}|^{p/r} dx \right)^{q/p} \left(\int_{\Omega} |v(x)^r|^{q/r} dx \right)^{r/q}
\\ =&\ \left(\int_{\Omega}|u(x)|^{p} dx \right)^{r/p} \left(\int_{\Omega} |v(x)|^{q} dx \right)^{r/q}
\end{align*}
∫ Ω ∣ u ( x ) v ( x ) ∣ r d x ≤ = ( ∫ Ω ∣ u ( x ) r ∣ p / r d x ) q / p ( ∫ Ω ∣ v ( x ) r ∣ q / r d x ) r / q ( ∫ Ω ∣ u ( x ) ∣ p d x ) r / p ( ∫ Ω ∣ v ( x ) ∣ q d x ) r / q
Taking the power of 1 r \dfrac{1}{r} r 1 to both sides,
( ∫ Ω ∣ u ( x ) v ( x ) ∣ r d x ) 1 / r ≤ ( ∫ Ω ∣ u ( x ) ∣ p d x ) 1 / p ( ∫ Ω ∣ v ( x ) ∣ q d x ) 1 / q
\left( \int_{\Omega} |u(x)v(x)|^rdx \right)^{1/r} \le \left(\int_{\Omega}|u(x)|^{p} dx \right)^{1/p} \left(\int_{\Omega} |v(x)|^{q} dx \right)^{1/q}
( ∫ Ω ∣ u ( x ) v ( x ) ∣ r d x ) 1/ r ≤ ( ∫ Ω ∣ u ( x ) ∣ p d x ) 1/ p ( ∫ Ω ∣ v ( x ) ∣ q d x ) 1/ q
Therefore,
∥ u v ∥ r = ( ∫ Ω ∣ u ( x ) v ( x ) ∣ r d x ) 1 / r ≤ ∥ u ∥ p ∥ v ∥ q
\| uv \|_{r} = \left( \int_{\Omega} |u(x)v(x)|^rdx \right)^{1/r} \le \| u \|_{p} \| v\|_{q}
∥ uv ∥ r = ( ∫ Ω ∣ u ( x ) v ( x ) ∣ r d x ) 1/ r ≤ ∥ u ∥ p ∥ v ∥ q
■
Theorem 2 Let’s say for 1 ≤ j ≤ N 1\le j \le N 1 ≤ j ≤ N , p j > 0 p_{j}>0 p j > 0 and ∑ j = 1 N 1 p j = 1 p 1 + 1 p 2 + ⋯ + 1 p N = 1 r \sum\limits_{j=1}^N\dfrac{1}{{p}_{j}}=\dfrac{1}{{p}_{1}}+\dfrac{1}{{p}_2}+\cdots+\dfrac{1}{{p}_{N}}=\dfrac{1}{r} j = 1 ∑ N p j 1 = p 1 1 + p 2 1 + ⋯ + p N 1 = r 1 . And suppose u = ∏ j = 1 N u j = u 1 u 2 … u N u=\prod _{j=1}^N u_{j}=u_{1}u_2\dots u_{N} u = ∏ j = 1 N u j = u 1 u 2 … u N and u j ∈ L p j ( Ω ) u_{j}\in L^{{p}_{j}}(\Omega) u j ∈ L p j ( Ω ) . Then u ∈ L r ( Ω ) u\in {L}^r (\Omega) u ∈ L r ( Ω ) and the inequality below holds.
∥ u ∥ r = ( ∫ Ω ∣ u ( x ) ∣ r d x ) 1 / r ≤ ∏ j = 1 N ∥ u j ∥ p j = ∥ u 1 ∥ p 1 ⋯ ∥ u N ∥ p N
\| u \|_{r} = \left( \int_{\Omega} |u(x)|^{r} dx \right)^{1/r} \le \prod_{j=1}^{N} \| u_{j} \|_{{p}_{j}} = \| u_{1} \|_{{p}_{1}} \cdots \| u_{N} \|_{p_{N}}
∥ u ∥ r = ( ∫ Ω ∣ u ( x ) ∣ r d x ) 1/ r ≤ j = 1 ∏ N ∥ u j ∥ p j = ∥ u 1 ∥ p 1 ⋯ ∥ u N ∥ p N
The above Theorem 1 can be seen to hold not only for two functions but also for any N N N number of functions.
Proof We use mathematical induction. First, when N = 2 N=2 N = 2 , it holds by Theorem 1. Then, assuming it holds for N = k N=k N = k , showing it also holds for N = k + 1 N=k+1 N = k + 1 completes the proof.
Let’s say ∑ j = 1 k 1 p j = 1 r \sum\limits_{j=1}^k \dfrac{1}{{p}_{j}}=\dfrac{1}{r} j = 1 ∑ k p j 1 = r 1 and it holds for N = k N=k N = k . Then, the following holds.
∥ ∏ j = 1 N u j ∥ r ≤ ∥ u 1 ∥ p 1 ∥ u 2 ∥ p 2 ⋯ ∥ u k ∥ p k
\left\| \prod_{j=1}^N u_{j} \right\|_{r} \le \| u_{1} \|_{p_{1}} \| u_{2} \|_{p_{2}} \cdots \| u_{k} \|_{p_{k}}
j = 1 ∏ N u j r ≤ ∥ u 1 ∥ p 1 ∥ u 2 ∥ p 2 ⋯ ∥ u k ∥ p k
Now, let’s say ∑ j = 1 k + 1 1 p j = 1 r + 1 p k + 1 = 1 r ′ \sum_{j=1}^{k+1}\dfrac{1}{{p}_{j}}=\dfrac{1}{r}+\dfrac{1}{{p}_{k+1}}=\dfrac{1}{r^{\prime}} ∑ j = 1 k + 1 p j 1 = r 1 + p k + 1 1 = r ′ 1 . Then,
∥ u ∥ r ′ = ∥ ( ∏ j = 1 k u j ) u k + 1 ∥ r ′ ≤ ∥ ∏ j = 1 k + 1 u j ∥ r ∥ u k + 1 ∥ p k + 1 ≤ ∥ u 1 ∥ p 1 ∥ u 2 ∥ p 2 ⋯ ∥ u k ∥ p k ∥ u k + 1 ∥ p k + 1 = ∏ j = 1 k + 1 ∥ u j ∥ p j
\begin{align*}
\| u \|_{r^{\prime}} =&\ \left\| \left( \prod_{j=1}^k u_{j} \right) u_{k+1} \right\|_{r^{\prime}}
\\ \le& \left\| \prod \limits_{j=1}^{k+1}u_{j} \right\|_{r} \| u_{k+1} \|_{p_{k+1}}
\\ \le& \| u_{1} \|_{p_{1}} \| u_{2} \|_{p_{2}} \cdots \| u_{k} \|_{p_{k}} \| u_{k+1} \| _{p_{k+1}}
\\ =&\ \prod \limits_{j=1}^{k+1} \| u_{j}\|_{p_{j}}
\end{align*}
∥ u ∥ r ′ = ≤ ≤ = ( j = 1 ∏ k u j ) u k + 1 r ′ j = 1 ∏ k + 1 u j r ∥ u k + 1 ∥ p k + 1 ∥ u 1 ∥ p 1 ∥ u 2 ∥ p 2 ⋯ ∥ u k ∥ p k ∥ u k + 1 ∥ p k + 1 j = 1 ∏ k + 1 ∥ u j ∥ p j
The second line holds by Theorem 1. The third line holds by assumption. Therefore, assuming it holds for N = k N=k N = k means it also holds for N = k + 1 N=k+1 N = k + 1 . Thus, the proof is completed by mathematical induction.
■
See also