logo

Properties of the Dirac Delta Function 📂Functions

Properties of the Dirac Delta Function

Properties

δ(x)=δ(x) \begin{equation} \delta (-x) =\delta (x) \end{equation}

δ(kx)=1kδ(x) \begin{equation} \delta (kx)= \frac{1}{|k|} \delta (x) \end{equation}

Proof

Proof of (1)(1)

Substituting f(x)δ(x)dx\int_{-\infty }^ { \infty } f(x) \delta (-x) dx with xy-x \equiv y gets us x=yx=-y and dx=dydx=-dy,

f(x)δ(x)dx= f(y)δ(y)dy= f(y)δ(y)dy= f(0)= f(x)δ(x)dx \begin{align*} \int_{-\infty } ^{ \infty } f(x) \delta (-x) dx =&\ -\int_{ \infty }^{-\infty} f(-y) \delta (y) dy \\ =&\ \int_{-\infty } ^{\infty } f(-y) \delta (y) dy \\ =&\ f(0) \\ =&\ \int_{-\infty } ^{\infty } f(x) \delta (x) dx \end{align*}

f(x)δ(x)dx=f(x)δ(x)dx \int_{-\infty }^ { \infty } f(x) {\color{blue}\delta (-x)} dx = \int_{-\infty } ^{\infty } f(x) {\color{blue}\delta (x)} dx

Therefore,

δ(x)=δ(x) \delta (-x) = \delta (x)

Proof of (2)(2)

Substituting f(x)δ(kx)dx\int_{-\infty }^ { \infty } f(x) \delta (kx) dx with kxykx \equiv y gets us x=1kyx=\frac{1}{k}y and dx=1ky dx=\frac{1}{k}y,

f(x)δ(kx)dx=1kf(1ky)δ(y)dy \int_{-\infty }^ { \infty } f(x) \delta (kx) dx = \frac{1}{k} \int_{-\infty }^ { \infty } f(\frac{1}{k}y) \delta (y) dy

However, this result is under the condition k>0k>0. When it’s k<0k<0, the integration interval must be considered.

When it’s k<0k<0 and substituting with kxykx \equiv y, it gets us x=1kyx=\frac{1}{k}y, dx=1kydx=\frac{1}{k}y and hence (x , y)(x \rightarrow \infty \ ,\ y \rightarrow -\infty), (x , y)( x \rightarrow -\infty \ ,\ y \rightarrow \infty),

f(x)δ(kx)dx= 1kf(1ky)δ(y)dy= (1k)(f(1ky)δ(y)dy)= 1kf(1ky)δ(y)dy \begin{align*} \int_{-\infty } ^{ \infty } f(x) \delta (kx) dx =&\ \frac{1}{k} \int_{\infty }^ { -\infty } f(\frac{1}{k}y) \delta (y) dy \\ =&\ \left( \frac{1}{-k} \right) \left(-\int_{\infty }^ { -\infty } f(\frac{1}{k}y) \delta (y) dy \right) \\ =&\ \frac{1}{|k|}\int_{-\infty }^ { \infty } f(\frac{1}{k}y) \delta (y) dy \end{align*}

Therefore, considering for all real numbers kk,

f(x)δ(kx)dx= 1kf(1ky)δ(y)dy= 1kf(0)= 1kf(x)δ(x)dx= f(x)1kδ(x)dx \begin{align*} \int_{-\infty }^ { \infty } f(x) \delta (kx) dx =&\ \frac{1}{|k|}\int_{-\infty }^ { \infty } f(\frac{1}{k}y) \delta (y) dy \\ =&\ \frac{1}{|k|} f(0) \\ =&\ \frac{1}{|k|}\int_{-\infty }^ { \infty } f(x) \delta (x) dx \\ =&\ \int_{-\infty }^ { \infty } f(x) \frac{1}{|k|}\delta (x) dx \end{align*}

f(x)δ(kx)dx=f(x)1kδ(x)dx \int_{-\infty }^ { \infty } f(x) {\color{blue} \delta (kx)} dx=\int_{-\infty }^ { \infty } f(x) {\color{blue} \frac{1}{|k|}\delta (x) } dx

δ(kx)=1kδ(x) \therefore \delta (kx) = \frac{1}{|k|}\delta (x)