Properties of the Dirac Delta Function
📂FunctionsProperties of the Dirac Delta Function
Properties
δ(−x)=δ(x)
δ(kx)=∣k∣1δ(x)
Proof
Proof of (1)
Substituting ∫−∞∞f(x)δ(−x)dx with −x≡y gets us x=−y and dx=−dy,
∫−∞∞f(x)δ(−x)dx==== −∫∞−∞f(−y)δ(y)dy ∫−∞∞f(−y)δ(y)dy f(0) ∫−∞∞f(x)δ(x)dx
∫−∞∞f(x)δ(−x)dx=∫−∞∞f(x)δ(x)dx
Therefore,
δ(−x)=δ(x)
■
Proof of (2)
Substituting ∫−∞∞f(x)δ(kx)dx with kx≡y gets us x=k1y and dx=k1y,
∫−∞∞f(x)δ(kx)dx=k1∫−∞∞f(k1y)δ(y)dy
However, this result is under the condition k>0. When it’s k<0, the integration interval must be considered.
When it’s k<0 and substituting with kx≡y, it gets us x=k1y, dx=k1y and hence (x→∞ , y→−∞), (x→−∞ , y→∞),
∫−∞∞f(x)δ(kx)dx=== k1∫∞−∞f(k1y)δ(y)dy (−k1)(−∫∞−∞f(k1y)δ(y)dy) ∣k∣1∫−∞∞f(k1y)δ(y)dy
Therefore, considering for all real numbers k,
∫−∞∞f(x)δ(kx)dx==== ∣k∣1∫−∞∞f(k1y)δ(y)dy ∣k∣1f(0) ∣k∣1∫−∞∞f(x)δ(x)dx ∫−∞∞f(x)∣k∣1δ(x)dx
∫−∞∞f(x)δ(kx)dx=∫−∞∞f(x)∣k∣1δ(x)dx
∴δ(kx)=∣k∣1δ(x)
■