logo

Fourier Cosine Series, Sine Series, Fourier Coefficients of Even and Odd Functions 📂Fourier Analysis

Fourier Cosine Series, Sine Series, Fourier Coefficients of Even and Odd Functions

Definition

Let’s say ff is a piecewise smooth function on the interval [0,L)[0,L). The following defined fef_{e} on the interval [L,L)[-L, L) is called the even extension of ff.

fe(t):={f(t)Lt<0f(t)0t<L f_{e}(t) := \begin{cases} f(t) & -L \le t <0 \\ f(-t) & 0 \le t <L\end{cases}

Similarly, the following defined fof_{o} on the interval [L,L)[-L, L) is called the odd extension of ff.

fo(t):={f(t)Lt<0f(t)0t<L f_{o}(t) := \begin{cases} -f(-t) & -L \le t <0 \\ f(t) & 0 \le t <L\end{cases}

Explanation

fef_{e} and fof_{o} are each the extension of the domain of ff to make it an even function and odd function respectively. fef_{e} and fof_{o} can be used to express the Fourier series of ff such that only cosine or sine terms appear.

Fourier Cosine Series

fe(t)=12a0+n=1n(ancosnπtL+bnsinnπtL) f_{e}(t)=\dfrac{1}{2}a_{0} + \sum \limits_{n=1}^{n} ( a_{n} \cos \frac{n \pi t}{L} + b_{n} \sin \frac{n\pi t}{L})

fef_{e} is an even function and because of t[0,L)t \in [0,L), fe(t)=f(t)f_{e}(t)=f(t) holds, so the following equation is valid.

a0=1LLLfe(t)dt=2L0Lf(t)dt a_{0}=\dfrac{1}{L}\displaystyle \int_{-L}^{L} f_{e}(t)dt=\dfrac{2}{L}\int_{0}^{L}f(t)dt

an=1LLLfe(t)cosnπtLdt=2L0Lf(t)cosnπtLdt a_{n}=\dfrac{1}{L}{\displaystyle \int_{-L}^{L} }f_{e}(t)\cos \frac{n\pi t}{L}dt=\dfrac{2}{L}{\displaystyle \int_{0}^L } f(t)\cos \frac{n \pi t}{L}dt

bn=1LLLfe(t)sinnπLtdt=0 b_{n}=\dfrac{1}{L}{\displaystyle \int_{-L}^{L} }f_{e}(t)\sin \frac{n\pi}{L}tdt=0

Therefore, the Fourier series of fe(t)f_{e}(t) is

fe(t)=12a0+n=1nancosnπtL f_{e}(t)=\dfrac{1}{2}a_{0} + \sum \limits_{n=1}^{n} a_{n} \cos \frac{n \pi t}{L}

And since t[0,L)t \in [0,L) implies fe(t)=f(t)f_{e}(t)=f(t),

f(t)=12a0+n=1nancosnπtL \begin{equation} f(t)=\dfrac{1}{2}a_{0} + \sum \limits_{n=1}^{n} a_{n} \cos \frac{n \pi t}{L} \label{eq1} \end{equation}

At this point, a0=2L0Lf(t)dta_{0}=\dfrac{2}{L}{\displaystyle \int_{0}^{L} }f(t)dt, an=2L0Lf(t)cosnπtLdta_{n}=\dfrac{2}{L}{\displaystyle \int_{0}^{L} }f(t)\cos \frac{n\pi t}{L} dt are given. The equation (1)(1) is referred to as the Fourier cosine series of ff.

Fourier Sine Series

fo(t)=12a0+n=1n(ancosnπtL+bnsinnπtL) f_{o}(t)=\dfrac{1}{2}a_{0} + \sum \limits_{n=1}^{n} ( a_{n} \cos \frac{n \pi t}{L} + b_{n} \sin \frac{n\pi t}{L})

fof_{o} is an odd function and because of t[0,L)t \in [0,L), fe(t)=f(t)f_{e}(t)=f(t) holds, so the following equation is valid.

a0=1LLLfo(t)dt=0an=1LLLfo(t)cosnπtLdt=0bn=1LLLfo(t)sinnπtLdt=2L0Lf(t)sinnπtL \begin{align*} a_{0} &= \dfrac{1}{L}\displaystyle \int_{-L}^{L} f_{o}(t)dt=0 \\ a_{n} &= \dfrac{1}{L}{\displaystyle \int_{-L}^{L} }f_{o}(t)\cos \frac{n\pi t}{L}dt=0 \\ b_{n} &= \dfrac{1}{L}{\displaystyle \int_{-L}^{L} }f_{o}(t)\sin \frac{n\pi t}{L}dt=\dfrac{2}{L}{\displaystyle \int_{0}^L } f(t)\sin \frac{n \pi t}{L} \end{align*}

Therefore, the Fourier series of fo(t)f_{o}(t) is

fo(t)=n=1nbnsinnπtL f_{o}(t)=\sum \limits_{n=1}^{n} b_{n} \sin \frac{n \pi t}{L}

And since t[0,L)t \in [0,L) gives fo(t)=f(t)f_{o}(t)=f(t),

f(t)=n=1nbnsinnπtL \begin{equation} f(t)=\sum \limits_{n=1}^{n} b_{n} \sin \frac{n \pi t}{L} \label{eq2} \end{equation}

At this point, bn=2L0Lf(t)sinnπtLdtb_{n}=\dfrac{2}{L}{\displaystyle \int_{0}^{L} }f(t)\sin \frac{n\pi t}{L} dt is given. The equation (2)(2) is called the Fourier sine series of ff.

Fourier Coefficients of Even and Odd Functions

To summarize the above content, let’s assume ff is a function defined in the interval [L,L)[-L,L). If ff is an even function, the Fourier coefficients of ff are as follows.

a0=2L0Lf(t)dtan=2L0Lf(t)cosnπtLdtbn=0 \begin{align*} a_{0} &= \dfrac{2}{L} {\displaystyle \int_{0}^{L} } f(t)dt \\ a_{n} &= \dfrac{2}{L} {\displaystyle \int_{0}^{L} } f(t) \cos \frac{n \pi t}{L}dt \\ b_{n} &= 0 \end{align*}

If ff is an odd function, the Fourier coefficients of ff are as follows.

a0=0an=0bn=2L0Lf(t)sinnπtLdt \begin{align*} a_{0} &= 0 \\ a_{n} &= 0 \\ b_{n} &= \dfrac{2}{L} {\displaystyle \int_{0}^{L} } f(t) \sin \frac{n \pi t}{L}dt \end{align*}