Representation Theory
Lie Groups
Matrix Lie Groups
- Matrix Lie Groups
- General Linear Group $\operatorname{GL}(n, \mathbb{R})$
- Orthogonal Group $\operatorname{O}(n)$
- Unitary Group $\mathrm{U}(n)$
- 🔒(25/12/16)Symplectic Group $\operatorname{Sp}(n, \mathbb{R})$
- 🔒(25/12/24)Euclidean group $\operatorname{E}(n)$
- 🔒(25/12/26)Heisenberg Group $H$
Topological Properties
- Connected Lie Group
- 🔒(25/12/28)Compact Lie Group
Lie Algebras
- 🔒(26/01/29)Lie Algebra $\mathfrak{g}$
- 🔒(26/01/31)Li subalgebra
- 🔒(26/02/02)Lie Algebra Isomorphism
- 🔒(26/02/16)Adjoint map $\operatorname{ad}$
Representations
- Representation of Groups $\rho : G \to \operatorname{GL}(V)$
- Equivariant Map of Group Representations
- Irreducible Representations of Groups
- Direct Sum of Group Representations $\rho = \rho_{1} \oplus \rho_{2}$
Main References
- William Fulton and Joe Harris. Representation Theory: A First Course (2004)
- Brian C. Hall. Lie Groups, Lie Algebras, and Representations (2nd)
All posts
- Lie Groups
- General Linear Group
- Unitary Group
- Special Linear Group
- Orthogonal Group
- Special Unitary Group
- Equivariant Map of Group Representations
- Topological Group
- Irreducible Representations of Groups
- Special Orthogonal Group
- Group Algebra
- Direct Sum of Group Representations
- Matrix Lie Groups
- Connected Lie Group
- Generalized Orthogonal Group
